精英家教网 > 高中数学 > 题目详情
3.已知关于x的不等式(a+b)x+(2a-3b)<0的解为x<-$\frac{1}{3}$,则关于x的不等式(a-3b)x+(b-2a)>0的解为(-∞,-3).

分析 根据题意,求出a、b的关系,再化简第二个不等式,从而求出它的解集.

解答 解:∵关于x的不等式(a+b)x+(2a-3b)<0的解为x<-$\frac{1}{3}$,
∴a+b>0,
解得x<$\frac{-2a+3b}{a+b}$;
∴$\frac{-2a+3b}{a+b}$=-$\frac{1}{3}$,
化简得a=2b,
∴2b+b>0;
即b>0,
∴关于x的不等式(a-3b)x+(b-2a)>0可化为
-bx>3b,
即x<-3,
∴该不等式的解为(-∞,-3).
故答案为:(-∞,-3).

点评 本题考查了含有字母系数的不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex(ax2-2x+2),其中a>0.
(1)若曲线y=f(x)在x=2处的切线与直线x+e2y-1=0垂直,求实数a的值.
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解关于x的不等式:$\frac{(a+1)x-2}{x-1}<1$(a是常数且a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若定义域在[0,1]的函数f(x)满足:
①对于任意x1,x2∈[0,1],当x1<x2时,都有f(x1)≥f(x2);
②f(0)=0;
③$f(\frac{x}{3})=\frac{1}{2}$f(x);
④f(1-x)+f(x)=-1,
则$f(\frac{1}{3})+f(\frac{9}{2017})$=-$\frac{17}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值为(  )
A.26B.25C.24D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC三个内角A,B,C的对边分别为a,b,c,且c=$\sqrt{3}$asinC+ccosA
(1)求角A
(2)若a=2$\sqrt{3}$,bc=4,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,c=3,b=$\sqrt{3}$,C=120°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=(3a-1)x+b-a,x∈[0,1],若f(x)≤1恒成立,则a+b的最大值为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若点P(2,3)∈A,且P(2,3)∉B,求m、n的取值范围.

查看答案和解析>>

同步练习册答案