【题目】已知,△ABC的三个内角为A,B,C,m=(sin B+sin C,0),n=(0,sin A)且
|m|2-|n|2=sin Bsin C.
(1)求角A的大小
(2)求sin B+sin C的取值范围.
【答案】(1);(2)
【解析】
试题分析:(1)利用向量的模长公式,结合正弦定理、余弦定理,即可求角A的大小;(2)由(1)知,,故,即可求sinB+sinC的取值范围
试题解析:(1)∵|m|2-|n|2=(sin B+sin C)2-sin2A
=sin2B+sin2C-sin2A+2sin Bsin C
依题意有,
sin2B+sin2C-sin2A+2sin Bsin C=sin Bsin C,
∴sin2B+sin2C-sin2A=-sin Bsin C,
由正弦定理得:b2+c2-a2=-bc,
∴cos A===-,∵A∈(0,π)
所以A=.
(2)由(1)知,A=,∴B+C=,
∴sin B+sin C=sin B+sin
=sin B+cos B=sin.
∵B+C=,∴0<B<,
则<B+<,则<sin≤1,
即sin B+sin C的取值范围为.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
在平面直角坐标系中,有三个点的坐标分别是.
(1)证明:A,B,C三点不共线;
(2)求过A,B的中点且与直线平行的直线方程;
(3)设过C且与AB所在的直线垂直的直线为,求与两坐标轴围成的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义域为的奇函数,当.
(Ⅰ)求出函数在上的解析式;
(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;
(Ⅲ)若关于的方程有三个不同的解,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:经过点,离心率,直线的方程为 .
(1)求椭圆的方程;
(2)经过椭圆右焦点的任一直线(不经过点)与椭圆交于两点,,设直线与相交于点,记的斜率分别为,问:是否为定值,若是,求出此定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a2=2,a5=8.
(1)求{an}的通项公式;
(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A、B、C所对的边分别是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线 | 乙生产线 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:(其中为样本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在R上的奇函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com