设曲线在点处的切线斜率为,且.对一切实数,不等式恒成立(≠0).
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:>.
(1) (2) (3) 要证原不等式,即证因为
所以
=所以
【解析】
试题分析:(1)由,所以 2分
(2),由,得 3分
4分
又恒成立,则由恒成立得
, 6分
同理由恒成立也可得: 7分
综上,,所以 8分
(3)
要证原不等式,即证
因为
所以
=
所以 12分
本小问也可用数学归纳法求证。证明如下:
由
当时,左边=1,右边=,左边>右边,所以,不等式成立
假设当时,不等式成立,即
当时,
左边=
由
所以
即当时,不等式也成立。综上得
考点:函数导数,求函数解析式及不等式证明
点评:函数求解析式采用的是待定系数法,由已知条件找到的关系式,期间将不等式恒成立问题转化为二次函数性质的考察,第三问在证明不等式时用到了放缩法,这种方法对学生有一定的难度
科目:高中数学 来源:深圳实验学校高中部2006-2007学年度第一学期摸底考试 高三数学(理科) 题型:044
|
查看答案和解析>>
科目:高中数学 来源:2014届浙江瑞安瑞祥高级中学高二下学期期中考试理数学试卷(解析版) 题型:解答题
设曲线在点处的切线斜率为,且,对一切实数,不等式恒成立.
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年山东省潍坊市高三开学摸底考试理科数学卷 题型:解答题
(本小题满分14分)
已知曲线在点处的切线斜率为
(1)求的极值;
(2)设在(-∞,1)上是增函数,求实数的取值范围;
(3)若数列满足,求证:对一切
查看答案和解析>>
科目:高中数学 来源:2010-2011学年山东省潍坊市高三开学摸底考试理科数学卷 题型:解答题
(本小题满分14分)
已知曲线在点处的切线斜率为
(1)求的极值;
(2)设在(-∞,1)上是增函数,求实数的取值范围;
(3)若数列满足,求证:对一切
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com