精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2x+2
3
sinxcosx,x∈R.
 (Ⅰ)求函数f(x)的最小正周期;  
 (Ⅱ)求函数f(x)在区间[-
π
6
π
4
]
上的值域.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(Ⅰ)首先把函数通过恒等变换变形成正弦型函数,进一步求出周期.
(Ⅱ)利用(Ⅰ)的函数关系式,通过已知的定义域求出函数的值域.
解答: 解:函数f(x)=2cos2x+2
3
sinxcosx=1+cos2x+
3
sin2x=2sin(2x
+
π
6
)+1
+1
所以:函数的周期为:T=π
(Ⅱ)由于x∈[-
π
6
π
4
]

所以:
2x+
π
6
∈[-
π
6
3
]

sin(2x+
π
6
)
∈[-
1
2
,1]

所以函数f(x)的值域为:[0,3]
点评:本题考查的知识要点:三角函数关系式的恒等变形,正弦型函数的周期,根据定义域求正弦型函数的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(7,-4)关于直线l的对称点为B(-5,6),则直线l的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2-x
(1)判断函数f(x)的奇偶性;
(2)证明:函数f(x)为(-∞,+∞)上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是(  )
A、(
1
4
1
2
)
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某兴趣小组由4男2女共6名同学.
(1)从6人中任意选取3人参加比赛,求所选3人中至少有1名女同学的概率;
(2)将6人平均分成两组进行比赛,列出所有的分组方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

要从12个人中选出5人去开会,按下列要求,分别有多少种不同的选法:
(1)甲乙丙三人必须入选;
(2)丁一人不能入选;
(3)甲乙丙三人只有一人入选;
(4)甲乙丙三人至少有一人入选.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
ax+2
(a<0)在区间(-∞,1]上恒有意义,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)与函数y=g(x)的图象如图所示,则函数y=f(x)•g(x)的图象可能是下面的(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案