精英家教网 > 高中数学 > 题目详情

【题目】我校举行“两城同创”的知识竞赛答题,高一年级共有1200名学生参加了这次竞赛.为了解竞赛成绩情况,从中抽取了100名学生的成绩进行统计.其中成绩分组区间为,其频率分布直方图如图所示,请你解答下列问题:

(1)求的值;

(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人;

(3)根据频率分布直方图,估计这次平均分(用组中值代替各组数据的平均值).

【答案】(1) (2)60人 (3)76分

【解析】

(1)利用诸矩形面积和为1可求的值.

(2)由直方图可得之间的频率,从而可估计总体中获奖的大约人数.

(3)利用组中值可得平均分的估计值.

(1)由,解得

(2)学生成绩在之间的频率为0.05,

故可估计所有参赛学生中能获奖的人数约为

(3)平均分的估计值为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆两点,且的周长为.

(1)求椭圆的方程;

(2)已知直线互相垂直,直线且与椭圆交于点两点,直线且与椭圆交于两点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知流程图如下图所示,该程序运行后,为使输出的值为16,则循环体的判断框内①处应填( )

A. 2 B. 3 C. 5 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称是“回归数列”.

(1)①前项和为的数列是否是“回归数列”?并请说明理由;

②通项公式为的数列是否是“回归数列”?并请说明理由;

(2)设是等差数列,首项,公差,若是“回归数列”,求的值;

(3)是否对任意的等差数列,总存在两个“回归数列”,使得成立,请给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~ 1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%(:设奖励方案函数模型为y=f (x)时,则公司对函数模型的基本要求是:x[251600]时,①f(x)是增函数;f (x) 75恒成立; 恒成立.

(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;

(2)已知函数符合公司奖励方案函数模型要求,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l: 为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线P(x0 , y0)上点P的极坐标为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形,均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

(1)求证:

(2)在平面中,是否总存在与平面平行的直线?若存在,请作出图形并说明:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案