精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=logax在(0,+∞)上是增函数,则a的取值范围是a>1.

分析 根据对数函数的单调性与底数的关系,可得答案.

解答 解:若函数f(x)=logax在(0,+∞)上是增函数,
则a>1,
故答案为:a>1

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(2x+φ)的图象的一个对称中心为($\frac{π}{3}$,0),若|φ|<$\frac{π}{2}$,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等差数列{an}中,已知a4=-1,a7=8,则首项a1与公差d为-10;3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=(x-a)2+1在(-∞,3)上是减函数,则a与3的大小关系是a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,为对数函数的是(  )
A.y=lnxB.x=log327C.y=log-2xD.y=5x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$=(5,n),且|$\overrightarrow{a}$|=13,则n=±12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知点E、F、G分别为正方形ABCD中边AB、BC、CD的中点,H为CG中点,现沿AF、AG、GF折叠,使B、C、D三点重合,重合后的点记为B,在三棱锥B-AFG中.
(1)证明:EH∥平面AFG;
(2)证明:AB⊥平面BFG;
(3)若正方形的边长为2,求四棱锥F-AGHE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)二次函数,且满足f(0)=1,f(x+1)-f(x)=2x.
(1)求解析式f(x);
(2)讨论f(x)在[0,a]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|0≤x≤2},B={x|x<0或x>1},则A∩B=(  )
A.(-∞,1]∪(2,+∞)B.(-∞,0)∪(1,2)C.(1,2]D.(1,2)

查看答案和解析>>

同步练习册答案