精英家教网 > 高中数学 > 题目详情
17.已知变量x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-5≥0}\\{x≤2}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.3$+2\sqrt{2}$B.$\frac{3+2\sqrt{2}}{2}$C.2$\sqrt{2}$D.$\sqrt{2}$

分析 先根据条件画出可行域,z=ax+by,再利用几何意义求最值,将最大值转化为y轴上的截距,只需求出直线z=ax+by过可行域内的点(2,4)时取得最大值,从而得到一个关于a,b的等式,最后利用基本不等式求最小值即可.

解答 解不等式组表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)
过直线x-y+1=0与直线3x-y-3=0的交点A(2,4)时,
目标函数z=ax+by(a>0,b>0)取得最大值2,
即2a+4b=2,即a+2b=1,
则$\frac{1}{a}$+$\frac{1}{b}$=(a+2b)($\frac{1}{a}$+$\frac{1}{b}$)=3+$\frac{2b}{a}$+$\frac{a}{b}$
≥3+2$\sqrt{\frac{2b}{a}•\frac{a}{b}}$=3+2$\sqrt{2}$,
当且仅当a=$\sqrt{2}$b=$\sqrt{2}$-1时,取得最小值3+2$\sqrt{2}$.
故选A.

点评 本题主要考查了基本不等式在最值问题中的应用、简单的线性规划,以及利用几何意义求最值,属于中档题.本题要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log${\;}_{\sqrt{3}}$5)的值为(  )
A.24B.-24C.$\sqrt{5}$-1D.1-$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某校有3男2女共5人均获北大、清华、复旦三大名校的保送资格,那么恰有2男1女三位同学保送北大的概率是$\frac{8}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=x2+ax-lnx+1,g(x)=x2+1.
(1)若a=-1,判断是否存在x0>0,使得f(x0)<0,并说明理由;
(2)设h(x)=f(x)-g(x),是否存在实数a,当x∈(0,e](e≈2.718,为自然常数)时,函数h(x)的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,则△ABC是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=$\frac{π}{8}$
(I)求φ;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)设函数g(x)=f($\frac{x}{2}$+$\frac{π}{8}$)sinx+$\frac{\sqrt{3}}{2}$-$\sqrt{3}$cos2x,求y=g(x)的最小正周期在区间[0,$\frac{π}{2}$]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}中,a1=2,an+1=an2-2n+1,
(1)证明:an>2n-1(n≥3);
(2)证明:$\sqrt{1+\sqrt{3+\sqrt{5+…+\sqrt{2n-1+\sqrt{2n+1}}}}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=2,则$\frac{sinα+2cosα}{2sinα+cosα}$=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的函数g(x)=mx2-2mx+n(m>0)在区间[0,3]上的最大值为4,最小值为0.设f(x)=$\frac{g(x)}{x}$.
(1)求函数f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,2]上恒成立,求实数k的取值范围;
(3)若关于x的方程f(|2x-1|)+$\frac{2t}{{|{{2^x}-1}|}}$-3t=0有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

同步练习册答案