试题分析:(1)利用导数的思想,通过导数的符号判定函数的单调性,进而得到极值。
(2)要证明不等式恒成立,移项,右边为零,将左边重新构造新的函数,证明函数的最小值大于零即可。
(3)在第二问的基础上,放缩法得到求和的不等式关系。
解:(1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205559168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205325698.png)
,
x >0,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205590738.png)
,…………1分
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205622435.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205637569.png)
;当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205653360.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205668562.png)
.
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205497447.png)
在(0,1)上单调递增;在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205715510.png)
上单调递减,
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205497447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205512323.png)
处取得极大值f(1)="1" ,无极小值。…………3分
(2)不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205762719.png)
即为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205793879.png)
记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205809950.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240002058241329.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205856544.png)
…………7分
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205871624.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205887675.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205918386.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205934645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205949509.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205965490.png)
上单调递增,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205996972.png)
,从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206012565.png)
,
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206027442.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205965490.png)
上也单调递增, 所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206074860.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000205528440.png)
. ……9分
(3)由(2)知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206105708.png)
恒成立,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206136806.png)
,
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206152571.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206183846.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206199740.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206214770.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206230760.png)
,… …
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206246926.png)
, …………12分
叠加得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240002062612062.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000206277856.png)
.
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240002062921008.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240002054661130.png)
…………14分
点评:解决该试题的关键是对于导数的符号与函数单调性的熟练的运用,并能结合单调性求解函数的 极值和最值问题。难点是对于递进关系的试题,证明不等式,往往要用到上一问的结论。