精英家教网 > 高中数学 > 题目详情
6.函数y=sin2(x+$\frac{π}{12}$)+cos2(x-$\frac{π}{12}$)-1是(  )
A.周期为2π的偶函数B.周期为2π的奇函数
C.周期为π的偶函数D.周期为π的奇函数

分析 由三角函数恒等变换的应用化简已知函数可得y=$\frac{1}{2}$sin2x,由周期公式及正弦函数的图象和性质即可得解.

解答 解:∵y=cos2(x-$\frac{π}{12}$)+sin2(x+$\frac{π}{12}$)-1
=$\frac{1+cos(2x-\frac{π}{6})}{2}$+$\frac{1-cos(2x+\frac{π}{6})}{2}$-1
=$\frac{1}{2}$sin2x.
∴周期T=$\frac{2π}{2}$=π,
由f(-x)=$\frac{1}{2}$sin(-2x)=-$\frac{1}{2}$sin2x=-f(x),可得函数为奇函数.
故选:D.

点评 本题考查三角函数恒等变换的应用,涉及三角函数的周期性,奇偶性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=asinx+b(a<0)的最大值为3,最小值为-1.
(1)求实数a、b的值;
(2)求f($\frac{2π}{3}$);
(3)已知α∈[0,π],且f(α)=0,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=$\root{5}{{x}^{3}}$的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,A(2,1),B(3,2),C(-3,-1),AD为BC边上的高,求点D的坐标与|$\overrightarrow{AD}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若θ为第二象限角,那么sin(cos2θ)•cos(sin2θ)的值为(  )
A.正值B.负值C.D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=-x2+2x,g(x)=$\left\{\begin{array}{l}{f(x)}&{x≤a}\\{g(x-1)-1}&{x>a}\end{array}\right.$,关于x的方程g(x)=t对于任意的t<1都恰有两个不同的解,则实数a取值集合是{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}中,a1=2,an+1=an+cn(c是不为0的常数,n∈N),且a1,a2,a3成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}-c}{n-{c}^{n}}$,Tn为数列{bn}的前n项和,证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若$\overline{z}$=$\frac{1+i}{1-i}$,则z2016=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.
(3)设g(t)=f(2t-a),t∈[-1,1],求g(t)的最大值.

查看答案和解析>>

同步练习册答案