精英家教网 > 高中数学 > 题目详情

【题目】年,“非典”爆发,以钟南山为代表的医护工作者经长期努力,抗击了非典.岁高龄的钟院士再次披挂上阵,逆行武汉抗击新冠疫情。为调查中学生对这一伟大“逆行者”的了解程度,某调查小组随机抽取了某市物化生、政史地的名高中生,请他们列举钟南山院士在医学上的成就,把能列举钟南山成就不少于项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:

组合

0

1

2

3

4

5

5项以上

物化生(人)

1

10

17

14

14

10

4

政史地(人)

0

8

10

6

3

2

1

1)请将下面的2×2列联表补充完整;

组合

比较了解

不太了解

合计

物化生

政史地

合计

2)判断是否有99%的把握认为,了解钟南山与选择物化生、政史地组合有关?

参考:.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】1)列联表见解析;(2)没有把握.

【解析】

1)根据调查数据即可得出列联表.

2)根据列联表计算出观测值即可判断结果.

1)依题意填写列联表如下:

组合

比较了解

不太了解

合计

物化生

42

28

70

政史地

12

18

30

合计

54

46

100

2

没有99%的把握认为,了解钟南山与选择物化生、政史地组有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽炫图”(以弦为边长得到的正方形组成).类比“赵爽弦图”,可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设若在大等边三角形中随机取一点则此点取自小等边三角形的概率是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD为直角梯形,,且平面平面ABCD.

1)求证:

2)在线段PA上是否存在一点M,使二面角M-BC-D的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若四面体ABCD的三组对棱分别相等,即ABCDACBDADBC,则下列结论正确的是(

A.四面体ABCD每组对棱相互垂直

B.四面体ABCD每个面的面积相等

C.从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°且小于180°

D.连接四面体ABCD每组对棱中点的线段相互垂直平分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取:

方案二:不收取管理费,每度0.58元.

1)求方案一的收费Lx)(元)与用电量x(度)间的函数关系.若老王家九月份按方案一缴费35元,问老王家该月用电多少度?

2)老王家该月用电量在什么范围内,选择方案一比选择方案二好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求

2)我们知道二项式的展开式,若等式两边对求导得,令.利用此方法解答下列问题:

①求

②求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的值域为_________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,底面为菱形,,且平面底面,平面底面

(1)证明:平面

(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,侧面⊥底面,底面为直角梯形,//的中点.

(Ⅰ)求证:PA//平面BEF;

(Ⅱ)若PCAB所成角为,求的长;

(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值

查看答案和解析>>

同步练习册答案