【题目】如图①,在五边形中,,,,,是以为斜边的等腰直角三角形.现将沿折起,使平面平面,如图②,记线段的中点为.
(1)求证:平面平面;
(2)求平面与平面所成的锐二面角的大小.
【答案】(1)见解析(2)45°
【解析】
【试题分析】(1)运用面面垂直的判定定理进行分析推证;(2)建立空间直角坐标系,借助空间向量的坐标形式运用向量的数量积公式进行分析求解:
(1)解:∵,是线段的中点,∴.
又∵,∴四边形为平行四边形,又,∴,
又∵是等腰直角的中点,∴.
∵,∴平面.
∵平面,
∴平面平面.
(2)∵平面平面,且,∴平面,∴.
∴两两垂直,以为坐标原点,以所在直线分别为轴建立如图所示的空间直角坐标系.
∵为等腰直角三角形,且,
∴,
∴,,,,,,
∴,,设平面的一个法向量为,则有
,∴,取,得,
∵平面,∴平面的一个法向量为,
设平面与平面所成的锐二面角为,则
,
∴平面与平面所成的锐二面角大小为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的离心率为,直线:交椭圆于,两点,,且点在椭圆上,当时,.
(1)求椭圆方程;
(2)试探究四边形的面积是否为定值,若是,求出此定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,其两个顶点和两个焦点构成的四边形面积为.
(1)求椭圆C的方程;
(2)过点的直线l与椭圆C交于A,B两点,且点M恰为线段AB的中点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为的函数图像的两个端点为、,向量,是图像上任意一点,其中,若不等式恒成立,则称函数在上满足“范围线性近似”,其中最小正实数称为该函数的线性近似阈值.若函数定义在上,则该函数的线性近似阈值是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,以原点0为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若曲线方程中的参数是,且与有且只有一个公共点,求的普通方程;
(2)已知点,若曲线方程中的参数是,,且与相交于,两个不同点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的左、右焦点为,,为右支上的动点(非顶点),为的内心.当变化时,的轨迹为( )
A.直线的一部分B.椭圆的一部分
C.双曲线的一部分D.无法确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程,其中是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数;
(2)若是从区间中任取的一个数,是从区间中任取的一个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com