【题目】设函数f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.
【答案】
(1)解:f(x)<g(x)等价于(x﹣4)2<(2x+1)2,∴x2+4x﹣5>0,
∴x<﹣5或x>1,
∴不等式的解集为{x|x<﹣5或x>1}
(2)解:令H(x)=2f(x)+g(x)= ,G(x)=ax,
2f(x)+g(x)>ax对任意的实数x恒成立,即H(x)的图象恒在直线G(x)=ax的上方.
故直线G(x)=ax的斜率a满足﹣4≤a< ,即a的范围为[﹣4, )
【解析】(1)f(x)<g(x)等价于(x﹣4)2<(2x+1)2 , 从而求得不等式f(x)<g(x)的解集.(2)由题意2f(x)+g(x)>ax对任意的实数x恒成立,即H(x)的图象恒在直线G(x)=ax的上,即可求得a的范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[ , ],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的长;
(Ⅱ)求BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函数f(x)的最小值,并写出此时x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分别求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com