精英家教网 > 高中数学 > 题目详情
11.下表为某班5位同学身高x(单位:cm)与体重y(单位:kg)的数据
 身高 170171  166178  160
 体重75  8070  8565 
若两个量间的回归直线方程$\widehat{y}$=1.16x+a,则身高为185的学生的体重约为 (  )
A.87.6kgB.89.5kgC.91.4kgD.92.3kg

分析 首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,根据所给的线性回归方程,把样本中心点代入求出字母系数的值,得到回归方程,取x=185求得对应体重.

解答 解:∵$\overline{x}=\frac{170+171+166+178+160}{5}=169$,
$\overline{y}=\frac{75+80+70+85+65}{5}$═75,
∴这组数据的样本中心点是(169,75),
∵两个量间的回归直线方程为$\widehat{y}$=1.16x+a,
∴75=1.16×169+a,解得a=-121.04,
则回归方程为$\widehat{y}$=1.16x-121.04.
取x=185,得y=92.3.
故选:D.

点评 本题考查线性回归方程,是一个基础题,解答此题的关键是明确回归直线一定经过样本中心点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若指数函数f(x)=ax的图象过点(2,4),则满足a2x+1<a3-2x的x取值范围是(  )
A.x<$\frac{1}{2}$B.x$>\frac{1}{2}$C.x>2D.x<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)=x2+bx+c,且f(-1)=0,f(3)=0.
(1)求b与c的值.
(2)证明函数f(x)在区间(-∞,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\frac{3}{2}$-$\frac{3}{{3}^{x}+1}$,则满足f($\frac{3}{2}$x)<f(2)的x的取值范围是(-∞,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆M过点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P(x,y)是圆M上任意一点求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的值域.
(1)y=x+$\sqrt{x-1}$;
(2)y=$\frac{1+4x+{x}^{2}}{1+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\root{2n}{x+1}$+(x-1)0(n∈N,n>1)有意义,则x的取值范围是{x|x≥-1,x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)的定义域为R,且f(x+1)=-$\frac{1}{f(x)}$,如果f(x)是奇函数,当0<x<$\frac{1}{2}$,f(x)=3x
(1)求f($\frac{2001}{4}$);
(2)当2k+$\frac{1}{2}$<x<2k+1时,求f(x)(k∈Z)的解析式;
(3)是否存在整数k,使得当2k+$\frac{1}{2}$<x<2x+1时,log3f(x)>x2-kx-2k有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:
男性女性合计
接受挑战16
不接受挑战6
合计3040
(1)请将上面的列联表补充完整.
(2)根据表中数据,能否在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

同步练习册答案