精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=$\frac{1}{2}{x^2}{e^x}$,f(x)的单调减区间是(-2,0).

分析 求出导函数,令导函数大于0求出x的范围为递增区间,导函数小于0得到f(x)的递减区间.

解答 解:f′(x)=xex+$\frac{1}{2}$x2ex=$\frac{{e}^{x}}{2}$x(x+2).
令$\frac{{e}^{x}}{2}$x(x+2)<0得x>0或x<-2,
∴f(x)的单增区间为(-∞,-2)和(0,+∞);
单减区间为(-2,0).
故答案为:(-2,0)

点评 求函数的单调区间常利用的工具是导数;导函数的符号判断函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知一圆锥面的顶角为60°,截割平面α与圆锥轴线成角为60°,平面α与轴线的交点S到圆锥面顶点O的距离为$\sqrt{3}$,则截得的截线椭圆的长轴长为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.
(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;
(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知狆:p:$\frac{1}{{x}-2}$≥1,q:|x-a|<1,若p是q的充分不必要条件,则实数a的取值范围为(  )
A.(-∞,3]B.[2,3]C.(2,3]D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于函数f(x),g(x),如果它们的图象有公共点P,且在点P处的切线相同,则称函数f(x)和g(x)在点P处相切,称点P为这两个函数的切点.设函数f(x)=ax2-bx(a≠0),g(x)=lnx.
(Ⅰ)当a=-1,b=0时,判断函数f(x)和g(x)是否相切?并说明理由;
(Ⅱ)已知a=b,a>0,且函数f(x)和g(x)相切,求切点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了得到函数y=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)的图象,可以把函数y=$\frac{1}{2}$cos2x的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个正三棱柱的正视图是正方形,且它的外接球的表面积等于$\frac{25π}{3}$,则这个正三棱柱的底面边长为(  )
A.1B.$\sqrt{2}$C.$\frac{5\sqrt{7}}{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面向量$\overrightarrow a=(λ,2)$,$\overrightarrow b=(-3,5)$,其中λ∈R.
(Ⅰ)若$\overrightarrow a$在$\overrightarrow b$方向上的投影为$\sqrt{34}$,求λ的值;
(Ⅱ)若$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)=2|x-m|-1(m∈R)为偶函数.记a=f(log${\;}_{\frac{1}{3}}$4),b=(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

同步练习册答案