精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆C.

1)求圆C的方程;

2)若圆C与直线交于AB两点,且,求a的值.

【答案】12

【解析】

1)求出曲线与坐标轴的三个交点,根据这三个交点在圆上可求出圆心坐标和半径,从而可得圆的方程;

2)设AB,联立直线与圆的方程,根据根与系数的关系可得,根据,化为,进而可解得 .

1)曲线与坐标轴的交点为(01)(,0)

由题意可设圆C的圆心坐标为(3)

,解得

∴圆C的半径为

∴圆C的方程为.

2)设点AB的坐标分别为AB,其坐标满足方程组,消去得到方程

由已知得,判别式①,

由根与系数的关系得

.

又∵,∴可化为③,

将②代入③解得,经检验,满足①,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一种密码锁的密码设置是在正边形的每个顶点处赋值0和1两个数中的一个,同时,在每个顶点处染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从境外回国的8位同胞中有1位被新冠肺炎病毒感染,需要通过核酸检测是否呈阳性来确定是否被感染.下面是两种检测方案:

方案一:逐个检测,直到能确定被感染者为止.

方案二:将8位同胞平均分为2组,将每组成员的核酸混合在一起后随机抽取一组进行检测,若检测呈阳性,则表明被感染者在这4位当中,然后逐个检测,直到确定被感染者为止;若检测呈阴性,则在另外一组中逐个进行检测,直到确定被感染者为止.

1)根据方案一,求检测次数不多于两次的概率;

2)若每次核酸检测费用都是100元,设方案二所需检测费用为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是否正确,请说明理由:

1)若向量 同向,且,则

2)若向,则的长度相等且方向相同或相反;

3)对于任意向量,若的方向相同,则 =

4)由于 方向不确定,故 不与任意向量平行;

5)向量平行,则向量方向相同或相反.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高中生在被问及家,朋友聚集的地方,个人空间三个场所中感到最幸福的场所在哪里?这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占朋友聚集的地方占个人空间占.美国高中生答题情况是朋友聚集的地方占家占个人空间占.如下表

在家里最幸福

在其它场所幸福

合计

中国高中生

美国高中生

合计

(Ⅰ)请将列联表补充完整;试判断能否有的把握认为恋家与否与国别有关;

(Ⅱ)从被调查的不恋家的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在个人空间感到幸福的学生的概率.

其中.

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.

(1)若直线与椭圆交于两点,求的值;

(2)求椭圆的内接矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上的动点,求点到曲线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个特定时段内,以点E为中心的7n mile以内海域被设为警戒水域.E正北55n mile处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40n mile的位置B,经过40分钟又测得该船已行驶到点A北偏东(其中)且与点A相距10n mile的位置C

I)求该船的行驶速度(单位:n mile /h;

II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是(

1)若函数的定义域关于原点对称,则为偶函数的充要条件为对任意的都成立;

2)若函数的定义域关于原点对称,则为奇函数的必要条件;

3)函数对任意的实数都有,则在实数集上是增函数;

4)已知函数在其定义域内有两个不同的极值点,则实数的取值范围是.

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案