精英家教网 > 高中数学 > 题目详情
(本小题满分15分)过曲线C:外的点A(1,0)作曲线C的切线恰有两条,
(Ⅰ)求满足的等量关系;
(Ⅱ)若存在,使成立,求的取值范围.
(Ⅰ);(Ⅱ)

试题分析:(Ⅰ)
过点A(1,0)作曲线C的切线,设切点,则切线方程为:
代入得:
(*)   ……………………………………………………5分
由条件切线恰有两条,方程(*)恰有两根。
,显然有两个极值点x=0与x=1,
于是
时,
时, ,此时经过(1,0)与条件不符
所以           …………………………………………………………………8分
(Ⅱ)因为存在,使,即
所以存在,使,得,即成立
,问题转化为的最大值…………………………10分

,令
此时为增函数,当,此时为减函数,
所以的最大值为
的最大值,得
所以上单调递减,
因此。       ……………………………………………………15分
点评:①求曲线的切线问题常利用导数的几何意义:在切点处的导数值为曲线的切线斜率,但要注意“在某点的切线”与“过某点的切线”的区别。②解决不等式恒成立问题或者存在性问题,常采用分离参数法转化为求函数的最值问题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设a为实数,函数
(I)求的单调区间与极值;
(II)求证:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线 在点(1,1)处的切线方程为  ________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与曲线相切,则a的值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)已知函数其中常数.
(1)当时,求函数的单调递增区间;
(2)当时,若函数有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数在点处的切线方程为时,若在D内恒成立,则称P为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知为实数,
(Ⅰ)若a=2,求的单调递增区间;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线处的切线平行于直线,则的坐标为(   )
A.( 1 , 0 )B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4)D.( 2 , 8 )和或(-1, -4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

同步练习册答案