精英家教网 > 高中数学 > 题目详情
19.函数f(x)是定义在(0,+∞)上的增函数,且满足f(a•b)=f(a)+f(b),f(3)=1则不等式:f(x)-f(x-2)>3的解集为(2,$\frac{27}{13}$).

分析 由题意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f(x)>f(8x-16),再由f(x)的定义域为(0,+∞),且在其上为增函数得得到不等式组,即可解得答案.

解答 解:∵f(xy)=f(x)+f(y),f(3)=1,
∴f(3×3)=f(3)+f(3)=2,
f(3×9)=f(3)+f(9)=3,
∵f(x)-f(x-2)>3,
∴f(x)>f(x-2)+f(27)=f(27x-54)
∵f(x)是定义在(0,+∞)上的增函数解得,
$\left\{\begin{array}{l}x>0\\ x-2>0\\ x>27x-54\end{array}\right.$
解得,2<x<$\frac{27}{13}$.
所以不等式f(x)-f(x-2)<3的解集为(2,$\frac{27}{13}$).
故答案为:(2,$\frac{27}{13}$).

点评 本题考查了抽象函数及其应用,函数的性质和应用,解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组.若第5组抽出的号码为22,则第10组抽出的号码应是(  )
A.45B.46C.47D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x0是函数f(x)=3x+$\frac{2}{1-x}$的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=2cosx的定义域为[$\frac{π}{3}$,$\frac{4π}{3}$],值域为[a,b],则b-a的值是(  )
A.2B.3C.$\sqrt{3}$+2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一投资公司有300万元资金,准备投资A、B两个项目,按照合同要求,对项目A的投资不少于对项目B的三分之二,而且每个项目的投资不少于25万元,若对项目A投资1万元可获利润0.4万元,对项目B投资1万元可获利润0.6万元,求该公司在这两个项目上共可获得的最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求$f(x)=tan(3x-\frac{π}{4})$的定义域
(2)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,求f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列刻画一组数据离散程度的是(  )
A.平均数B.方差C.中位数D.众数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$>0,则不等式$f(x+\frac{1}{2})<f(1-x)$的解集为$[0,\frac{1}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知底面为矩形的四棱锥D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,DE⊥AE,G、F分别为AD,CE的中点,其中二面角D-AE-C的平面角的正切值为-tan2.
(1)求证:FG∥平面BCD;
(2)求二面角A-BD-C的大小.

查看答案和解析>>

同步练习册答案