精英家教网 > 高中数学 > 题目详情

若二次函数y=f(x)的图象过原点,且它的导数y=f′(x)的图象是经过第一、二、三象限的一条直线,则y=f(x)的图象顶点在


  1. A.
    第一象限
  2. B.
    第二象限
  3. C.
    第三象限
  4. D.
    第四象限
C
分析:设二次函数y=f(x)=ax2+bx,利用它的导数y=f′(x)=2ax+b 是经过第一、二、三象限的一条直线,
可得a>0,b>0,y=f(x)的图象顶点 (- )在第三象限.
解答:由题意可知可设二次函数y=f(x)=ax2+bx,它的导数y=f′(x)=2ax+b,
由导数y=f′(x)的图象是经过第一、二、三象限的一条直线,∴a>0,b>0,
y=f(x)的图象顶点 (- )在第三象限,
故选 C.
点评:本题考查求函数的导数的方法,直线在坐标系中的位置与斜率、截距的关系,二次函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数y=f(x)的图象过原点,且它的导数y=f′(x)的图象是经过第一、二、三象限的一条直线,则y=f(x)的图象顶点在(  )
A、第一象限B、第二象限C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数y=f(x)的图象关于y轴对称,且1≤f(1)≤2,3≤f(2)≤4,求f(3)的范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学一轮精品复习学案:2.7 导数(解析版) 题型:选择题

若二次函数y=f(x)的图象过原点,且它的导数y=f′(x)的图象是经过第一、二、三象限的一条直线,则y=f(x)的图象顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第119-122课时): 不等式问题的题型与方法(解析版) 题型:解答题

若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.

查看答案和解析>>

同步练习册答案