精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为 .
(1)写出直线 的普通方程及圆 的直角坐标方程;
(2)点 是直线 上的点,求点 的坐标,使 到圆心 的距离最小.

【答案】
(1)解:由 消去参数 ,得直线 的普通方程为

,即圆 的直角坐标方程为


(2)解:

最小,此时 .


【解析】(1)根据题意结合已知条件消参化为直线的一般方程,再由参数方程与直角坐标方程的互化关系即可得出圆的直角坐标方程。(2)根据题意把点的坐标代入到两点间的结论公式整理可得出关于t的一元二次方程,借助二次函数的最值求出点P到圆心的最小距离。
【考点精析】认真审题,首先需要了解直线的参数方程(经过点,倾斜角为的直线的参数方程可表示为为参数)).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知ABC三个顶点坐标为A(78)B(104)C(2,-4)

(1)求BC边上的中线所在直线的方程;

(2)求BC边上的高所在直线的方程.

【答案】(1);(2)

【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.

试题解析:1)由B(104)C(2,-4)BC中点D的坐标为(60),

所以AD的斜率为k8

所以BC边上的中线AD所在直线的方程为y08(x6)

8xy480

2)由B(104)C(2,-4)BC所在直线的斜率为k1

所以BC边上的高所在直线的斜率为-1

所以BC边上的高所在直线的方程为y8=-(x7),即xy150

型】解答
束】
17

【题目】已知直线lx2y2m20

(1)求过点(23)且与直线l垂直的直线的方程;

(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出s的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知关于的不等式.

(1)当时,求此不等式的解集.

(2)求关于的不等式(其中)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其中, ,数列满足,数列满足

(1)求数列的通项公式;

(2)是否存在自然数,使得对于任意恒成立?若存在,求出的最小值;

(3)若数列满足求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:

身高达标

身高不达标

总计

经常参加体育锻炼

40

不经常参加体育锻炼

15

总计

100


(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 为参数),圆 ( 为参数),
(Ⅰ)当 时,求 的交点坐标;
(Ⅱ)过坐标原点 的垂线,垂足为 , 的中点,当 变化时,求 点轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

同步练习册答案