【题目】已知.
(1)设是的极值点,求实数的值,并求的单调区间:
(2)时,求证:.
【答案】(1) 单调递增区间为,单调递减区间为; (2)见解析.
【解析】
(1)由题意,求得函数的导数,由是函数的极值点,解得,又由,进而得到函数的单调区间;
(2)由(1),进而得到函数的单调性和最小值,令,利用导数求得在上的单调性,即可作出证明.
(1)由题意,函数的定义域为,
又由,且是函数的极值点,
所以,解得,
又时,在上,是增函数,且,
所以,得,,得,
所以函数的单调递增区间为,单调递减区间为.
(2)由(1)知因为,在上,是增函数,
又(且当自变量逐渐趋向于时,趋向于),
所以,,使得,
所以,即,
在上,,函数是减函数,
在上,,函数是增函数,
所以,当时,取得极小值,也是最小值,
所以,
令,
则,
当时,,函数单调递减,所以,
即成立,
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD与平面ABPE所成的二面角的余弦值;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)的离心率为,焦距为2.
(1)求椭圆E的方程;
(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(Ⅰ)写出曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,OB、CD是两条互相平行的笔直公路,且均与笔直公路OC垂直(公路宽度忽略不计),半径OC=1千米的扇形COA为该市某一景点区域,当地政府为缓解景点周边的交通压力,欲在圆弧AC上新增一个入口E(点E不与A、C重合),并在E点建一段与圆弧相切(E为切点)的笔直公路与OB、CD分别交于M、N.当公路建成后,计划将所围成的区域在景点之外的部分建成停车场(图中阴影部分),设∠CON=θ,停车场面积为S平方千米.
(1)求函数S=f(θ)的解析式,并写出函数的定义域;
(2)为对该计划进行可行性研究,需要预知所建停车场至少有多少面积,请计算当θ为何值时,S有最小值,并求出该最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点为的中点.
(Ⅰ)求证: 面 ;
(Ⅱ)在边上找一点,使∥面,
并求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com