精英家教网 > 高中数学 > 题目详情
已知点A(0,1),B,C是x轴上两点,且|BC|=6(B在C的左侧).设△ABC的外接圆的圆心为M.
(Ⅰ)已知,试求直线AB的方程;
(Ⅱ)当圆M与直线y=9相切时,求圆M的方程;
(Ⅲ)设|AB|=l1,|AC|=l2,试求s的最大值.

【答案】分析:(Ⅰ)设出B,C的坐标,利用,建立方程,求得B,C的坐标,从而可得直线AB的方程;
(Ⅱ)设圆心为(a,b),半径为r,利用圆M与直线y=9相切,建立方程组,从而可求圆M的方程;
(Ⅲ)设B(m-3,0),C(m+3,0),求出|AB|=l1,|AC|=l2,利用换元法、配方法即可求得结论.
解答:解:(Ⅰ)设B(a,0),则C(a+6,0).
∵A(0,1),∴
得a(a+6)+1=-4,
解得:a=-1或-5,
所以,直线AB的方程为
(Ⅱ)设圆心为(a,b),半径为r,则,解之得:a=±4,b=4,r=5,
所以,圆M的方程为(x±4)2+(y-4)2=25.
(Ⅲ)设B(m-3,0),C(m+3,0),则
所以,
令m2+10=t(t≥10),则s==
等号当且仅当t=20,即时取得.
∴当时,s的最大值为
点评:本题考查向量知识的运用,考查圆的标准方程,考查最值的求解,正确列出函数关系式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足
MB
OA
MA
AB
=
MB
BA
,M点的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1)和椭圆
x22
+y2=1上的任意一点B,则|AB|最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1),B(4,2),若点P在坐标轴上,则满足PA⊥PB的点P的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

i
j
为直角坐标平面内x、y轴正方向上的单位向量,若向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

(1)求动点M(x,y)的轨迹方程?并指出方程所表示的曲线;
(2)已知点A(0,1},设直线l:y=
1
2
x-3与点M的轨迹交于B、C两点,问是否存在实数m,使得
AB
AC
=
9
2
?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1),B,C是x轴上两点,且|BC|=6(B在C的左侧).设△ABC的外接圆的圆心为M.
(Ⅰ)已知
AB
AC
=-4
,试求直线AB的方程;
(Ⅱ)当圆M与直线y=9相切时,求圆M的方程;
(Ⅲ)设|AB|=l1,|AC|=l2s=
l1
l2
+
l2
l1
,试求s的最大值.

查看答案和解析>>

同步练习册答案