精英家教网 > 高中数学 > 题目详情

如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.

(1)证明:由四边形MNEF,EFDC都是矩形,得到MN∥EF∥CD,MN=EF=CD.
推出四边形MNCD是平行四边形,从而NC∥平面MFD.
(2)证明:连接ED,设ED∩FC=O.推出FC⊥NE.又EC=CD,所以四边形ECDF为正方形,结合 FC⊥ED.推出FC⊥平面NED,所以ND⊥FC.(3)x=2时,四面体NFEC的体积有最大值2.

解析试题分析:(1)证明:因为四边形MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.
所以四边形MNCD是平行四边形,所以NC∥MD,因为NC?平面MFD,所以NC∥平面MFD.                 4分
(2)证明:连接ED,设ED∩FC=O.因为平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF,                              5分
所以FC⊥NE.又EC=CD,所以四边形ECDF为正方形,所以 FC⊥ED.所以FC⊥平面NED,
所以ND⊥FC.                              8分
(3)解:设NE=,则EC=4-,其中0<x<4.由(1)得NE⊥平面FEC,所以四面体NFEC的体积为,所以.
当且仅当,即x=2时,四面体NFEC的体积有最大值2.
考点:本题主要考查立体几何中的平行关系、垂直关系,几何体体积计算,均值定理的应用。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,(1)(2)小题,将立体问题转化成平面问题,这也是解决立体几何问题的一个基本思路。(3)利用函数思想,构建体积函数表达式,应用均值定理,求得体积的最大值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,的中点,,二面角的大小为

(1)证明:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,侧棱⊥底面的中点,的中点.

(1)证明:平面
(2)若为直线上任意一点,求几何体的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:四棱锥中,,,

(Ⅰ)证明: 平面
(Ⅱ)在线段上是否存在一点,使直线与平面成角正弦值等于,若存在,指出点位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面为矩
形,⊥平面,上的点,若⊥平面

(1)求证:的中点;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点(与端点不重合),且.

(1)若,求证:;
(2)若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

同步练习册答案