精英家教网 > 高中数学 > 题目详情

椭圆的上顶点为B,半焦距为,平面内一点A满足|AB|=,右焦点F在直线AB上的射影为D,|OD|=c,则|FA|等于

A.                                 B.

C.                                            D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为
π
3
,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+
3
y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+
2
=0
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点(-
1
2
,-1).

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

同步练习册答案