【题目】椭圆C: + =1(a>b>0)的离心率为 ,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为 时,|FM|= .
(1)求椭圆C的方程;
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.
【答案】
(1)
解:依题意∴ ),∴ ,
又∵ ,解得a2=3,b2=2.
∴椭圆C的方程为: .
(2)
解:依题意直线l不垂直x轴,
当直线l的斜率k≠0时,可设直线l的方程为:y=k(x+1)(k≠0)
则直线AB的方程为:y=﹣ .
联立 ,得 .
, …①.
设AB的中点为C,则xC= .
点C在直线l上,∴ ,m=﹣2k﹣ …②
此时 与①矛盾,故k≠0时不成立.
当直线l的斜率k=0时,A(x0,y0),B(x0,﹣y0) (x0>0,y0>0)
△AOB面积s= .
∵ ,∴ ..
∴△AOB面积的最大值为 ,当且仅当 时取等号.
【解析】(1)根据离心率及弦长构造方程组,求得a,b. (2)当直线l的斜率k≠0时,可设直线l的方程为:y=k(x+1)(k≠0)
联立直线与椭圆方程,由△>0得到k,m的关系式,再由对称性求得k,m的关系式,此时k不存在.
当直线l的斜率k=0时,A(x0 , y0),B(x0 , ﹣y0) (x0>0,y0>0)△AOB面积s= .
由均值不等式求解.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】(2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人.
图 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程选讲]
在直角坐标系xOy中,圆C的方程为(x﹣1)2+y2= ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点M的极坐标为(2,θ),过点M斜率为1的直线交圆C于A,B两点.
(1)求圆C的极坐标方程;
(2)求|MA||MB|的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与抛物线交于点A,B两点,与x轴交于点M,直线OA,OB的斜率之积为.
(1)证明:直线AB过定点;
(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE||OF|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-x+c定义在区间[0,1]上,x1,x2∈
[0,1],且x1≠x2,求证:
(1)f(0)=f(1);
(2)|f(x2)-f(x1)|<|x1-x2|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sin(ωx+ )(ω>0)的图象与x轴的交点横坐标构成一个公差为 的等差数列,要得到g(x)=cos(ωx+ )的图象,可将f(x)的图象( )
A.向右平移 个单位
B.向左平移 个单位
C.向左平移 个单位
D.向右平移 个单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com