PΪÍÖÔ²C£º
y2
a2
+
x2
b2
=1(a£¾b£¾0)
ÉÏÒ»µã£¬A¡¢BΪԲO£ºx2+y2=b2ÉϵÄÁ½¸ö²»Í¬µÄµã£¬Ö±ÏßAB·Ö±ð½»xÖᣬyÖáÓÚM¡¢NÁ½µãÇÒ
PA
OA
=0
£¬
PB
OB
=0
£¬OΪ×ø±êÔ­µã£®
£¨1£©ÈôÍÖÔ²µÄ×¼ÏßΪy=¡À
25
3
£¬²¢ÇÒ
a2
|
OM
|2
+
b2
|
ON
|2
=
25
16
£¬ÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÍÖÔ²CÉÏÊÇ·ñ´æÔÚÂú×ã
PA
PB
=0
µÄµãP£¿Èô´æÔÚ£¬Çó³ö´æÔÚʱa£¬bÂú×ãµÄÌõ¼þ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ö±½Ó¸ù¾ÝÌõ¼þÇó³öPAÓëPB£¬½ø¶øµÃµ½ABµÄ·½³Ì£¬Çó³öM¡¢NÁ½µãµÄ×ø±ê£¬´úÈë
a2
|
OM
|2
+
b2
|
ON
|2
=
25
16
£¬¿ÉÒԵõ½¹ØÓÚa£¬bµÄµÈʽ£»ÔÙ½áºÏÍÖÔ²µÄ×¼ÏßΪy=¡À
25
3
£¬¼´¿ÉÇó³öa£¬bµÄÖµ£¬½ø¶øÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÏȼÙÉè´æÔÚP£¨x0£¬y0£©Âú×ãÒªÇ󣬵õ½OBPAΪÕý·½ÐΣ¬¼´|OP|=
2
b
£¬×ª»¯Îª¹ØÓÚµãP£¨x0£¬y0£©µÄµÈʽ£»ÔÙ½áºÏP£¨x0£¬y0£©ÔÚÍÖÔ²ÉÏ£¬¼´¿ÉÇó³öµãP£¨x0£¬y0£©µÄ×ø±êËùÂú×ãµÄµÈʽ£¬ÔÙͨ¹ýÌÖÂÛ¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©
Ò×ÇóµÃPA£ºx1x+y1y=b2£¬PB£ºx2x+y2y=b2£¬
Ôòx1x0+y1y0=b2£¬x2x0+y2y0=b2
ÓÚÊÇAB£ºx0x+y0y=b2£¨x0y0¡Ù0£©£¬
¿ÉÇóµÃM(
b2
x0
£¬0)
N(0£¬
b2
y0
)

a2
|
OM
|
2
+
b2
|
ON
|
2
=
a2
b4
x
2
0
+
b2
b4
y
2
0
=
a2
x
2
0
b4
+
b2
y
2
0
b4
=
a2
b2
(
x
2
0
b2
+
y
2
0
a2
)=
a2
b2
=
25
16

ÔÙÓÉÌõ¼þ
a2
c
=
25
3
£¬ÒÔ¼°a2-b2=c2Ò×µÃa=5£¬b=4£¬
ÓÚÊÇËùÇóÍÖԲΪ
y2
25
+
x2
16
=1
£¬
£¨2£©Éè´æÔÚP£¨x0£¬y0£©Âú×ãÒªÇó£¬Ôòµ±ÇÒ½öµ±OBPAΪÕý·½ÐΣ®
|OP|=
2
b
£¬¼´x02+y02=2b2¡­£¨1£©£¬
ÓÖÒòΪ£º
y
2
0
a2
+
x
2
0
b2
=1(a£¾b£¾0)¡­(2)

½â£¨1£©£¨2£©µÃ
x
2
0
=
b2(a2-2b2)
a2-b2
£¬
y
2
0
=
b2a2
a2-b2

ËùÒÔ   £¨¢¡£©µ±a£¾
2
b£¾0
ʱ£¬´æÔÚP£¨x0£¬y0£©Âú×ãÒªÇó£»
£¨¢¢£©µ±0£¼b£¼a£¼
2
b
ʱ£¬²»´æÔÚP£¨x0£¬y0£©Âú×ãÒªÇó£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÔ²ÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮ԲÓëԲ׶ÇúÏßͬÊôÓÚ¼¸ºÎÄÚÈÝ£¬¶¼¿ÉÒÔÓýâÎö·¨Ñо¿£¨¶¼ÊǶþ´ÎÇúÏߣ©£®ËùÒÔÒªÌرð¹Ø×¢Ô²ÓëԲ׶ÇúÏßÔÚһЩÌâÄ¿ÖеĽ»»ã¡¢×ۺϣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²C£º
y2
a2
+
x2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÉÏ¡¢Ï¶¥µã·Ö±ðΪA1£¬A2£¬ÍÖÔ²Éϵĵ㵽ÉϽ¹µãF1µÄ¾àÀëµÄ×îСֵΪ1£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨2£©ÒÔÔ­µãΪ¶¥µã£¬F1Ϊ½¹µãµÄÅ×ÎïÏßÉϵĵãP£¨·ÇÔ­µã£©´¦µÄÇÐÏßÓëxÖᣬyÖá·Ö±ð½»ÓÚQ¡¢RÁ½µã£¬Èô
PQ
=¦Ë
PR
£¬Çó¦ËµÄÖµ£®
£¨3£©ÊÇ·ñ´æÔÚ¹ýµã£¨0£¬m£©µÄÖ±Ïßl£¬Ê¹µÃlÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¨A¡¢B²»ÊÇÉÏ¡¢Ï¶¥µã£©ÇÒÂú×ã
A1A
A1B
=0
£¬Èô´æÔÚ£¬Çó³öʵÊýmµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
y2
a2
+
x2
b2
=1£¨a£¾b£¾0£©µÄÁ½½¹µãÓë¶ÌÖáµÄÒ»¸ö¶ËµãÁ¬½á³ÉµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ö±Ïßl£ºx-y-b=0ÊÇÅ×ÎïÏßx2=4yµÄÒ»ÌõÇÐÏߣ®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©Ö±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬ÈôµãPÂú×ã
OP
+
OA
+
OB
=
0
£¨OΪ×ø±êÔ­µã£©£¬ÅжϵãPÊÇ·ñÔÚÍÖÔ²CÉÏ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
y2
a2
+
x2
b2
=1(a
£¾b£¾0£©µÄÀëÐÄÂÊΪ
2
2
£¬ÇÒÍÖÔ²ÉÏÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ2
2
£®Ð±ÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl¹ýÍÖÔ²µÄÉϽ¹µãÇÒÓëÍÖÔ²ÏཻÓÚP£¬QÁ½µã£¬Ï߶ÎPQµÄ´¹Ö±Æ½·ÖÏßÓëyÖáÏཻÓÚµãM£¨0£¬m£©£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÇómµÄÈ¡Öµ·¶Î§£®
£¨3£©ÊÔÓÃm±íʾ¡÷MPQµÄÃæ»ýS£¬²¢ÇóÃæ»ýSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²C£º
y2
a2
+
x2
b2
=1
£¨a£¾b£¾0£©µÄÉÏϽ¹µã·Ö±ðΪF1£¬F2£¬ÔÚxÖáµÄÁ½¶Ëµã·Ö±ðΪA£¬B£¬ËıßÐÎF1AF2BÊDZ߳¤Îª4µÄÕý·½ÐΣ®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©¹ýµãP£¨0£¬3£©×÷Ö±Ïßl½»ÍÖÔ²ÓëM£¬NÁ½µã£¬ÇÒ
MP
=3
PN
£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸