精英家教网 > 高中数学 > 题目详情
19.已知sinα=$\frac{2}{3}$,cosβ=-$\frac{3}{4}$,且α、β∈($\frac{π}{2}$,π),判断α-β是第几象限角?

分析 由条件求得α-β∈(-$\frac{π}{12}$,$\frac{π}{12}$ ),再根据sin(α-β)<0,求得α-β是第几象限角.

解答 解:∵sinα=$\frac{2}{3}$∈($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),cosβ=-$\frac{3}{4}$∈(-$\frac{\sqrt{3}}{2}$,-$\frac{\sqrt{2}}{2}$ ),且α、β∈($\frac{π}{2}$,π),
∴α∈($\frac{3π}{4}$,$\frac{5π}{6}$)、β∈($\frac{3π}{4}$,$\frac{5π}{6}$ ),
∴α-β∈(-$\frac{π}{12}$,$\frac{π}{12}$ ).
再根据cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{\sqrt{5}}{3}$,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{\sqrt{7}}{4}$,
可得sin(α-β)=sinαcosβ-cosαsinβ=$\frac{2}{3}•(-\frac{3}{4})$-(-$\frac{\sqrt{5}}{3}$)•$\frac{\sqrt{7}}{4}$=$\frac{-6+\sqrt{35}}{12}$<0,
可得α-β∈(-$\frac{π}{12}$,0),故α-β为第四象限角.

点评 本题主要考查三角函数在各个象限中的符号,两角差的正弦公式、同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①垂直于同一条直线的两个平面平行;
②平行于同一条直线的两个平面平行;
③平行于同一个平面的两个平面平行;
④与同一条直线成等角的两个平面平行;
⑤一个平面内的两相交直线与另一个平面内的两相交直线分别平行,则这两个平面平行;
⑥一个平面上不共线的三点到另一个平面的距离相等,则这两个平面平行;
⑦两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行;
⑧存在分别经过直线a和b的两个互相平行的平面;
⑨存在分别经过直线a和b的两个互相垂直的平面.
⑩如果一个二面角的两个面与另一个二面角的两个面分别垂直,那么这两个二面角大小相等或互补,
其中正确命题的序号是①③⑦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.等差数列{an}中,设a3=1012与an=3112且d=70.求项数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={(x,y)|x2+y2≤1},若实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“和谐实数对”.则以下集合中,存在“和谐实数对”的是(  )
A.{(λ,μ)|λ+μ=4}B.{(λ,μ)|λ22=4}C.{(λ,μ)|λ2-4μ=4}D.{(λ,μ)|λ22=4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x),x∈M}=M,则称函数f(x)具有性质P,给出下列3个函数:
①f(x)=sinx;
②f(x)=x3-3x;
③f(x)=lgx+3.
其中具有性质P的函数是②.(填入所有满足条件函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.各项均为正数的等比数列{an}的前项和Sn,若Sn+Sn+2≤2Sn+1,则公比q的取值范围为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题,①在空间中,若$\overrightarrow{a}$=λ$\overrightarrow{b}$(λ∈R),则$\overrightarrow{a}$∥$\overrightarrow{b}$:②在空间中,$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=λ$\overrightarrow{b}$(λ∈R),下列说法正确的是(  )
A.①是真命题,②是假命题B.①是假命题,②是真命题
C.①②都是真命题D.①②都是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A′B′C′D′中,E,F,G分别是面A′C′,面B′C,面CD′的中心,则AE与FG所成的角大小为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,a1=1,a2=3,a3=5且(2n+1)Sn+1-(2n+5)Sn=An+B,n∈N*,其中A,B为常数.
(1)求A,B的值;
(2)证明:数列{an}为等差数列;
(3)数列{an}中是否存在两项am、ak(m,k∈N*),使得${a}_{k}^{4}$-2ak+22=${a}_{m}^{2}$,如果存在,求出所有的k和m,如果存在,请说明理由.

查看答案和解析>>

同步练习册答案