精英家教网 > 高中数学 > 题目详情
4.在锐角△ABC中,交A,B,C的对边分别是a,b,c,且A,B,C成等差数列
(Ⅰ)若$\overrightarrow{BA}$$•\overrightarrow{BC}$=$\frac{3}{2}$,b=$\sqrt{3}$,求a+c的值;
(Ⅱ)求2sinA+sinC的取值范围.

分析 根据题意,求出B=60°,A+C=120°;
(Ⅰ)由数量积的定义得出c•a•cosB=$\frac{3}{2}$,求出ac的值,再利用余弦定理求出a2+c2的值,即可求出a+c;
(Ⅱ)利用三角恒等变换化简2sinA+sinC,根据C的范围求出2sinA+sinC的取值范围.

解答 解:锐角△ABC中,A、B、C成等差数列,
∴2B=A+C,
又A+B+C=180°,
∴B=60°,A+C=120°;
(Ⅰ)当$\overrightarrow{BA}$$•\overrightarrow{BC}$=$\frac{3}{2}$时,即c•a•cosB=$\frac{3}{2}$,
∴c•a•cos60°=$\frac{3}{2}$,
∴ac=3;
又b=$\sqrt{3}$,
∴b2=a2+c2-2accosB=a2+c2-2•$\frac{3}{2}$=3,
∴a2+c2=6;
∴(a+c)2=a2+c2+2ac=6+2×3=12,
∴a+c=2$\sqrt{3}$;
(Ⅱ)2sinA+sinC=2sin(120°-C)+sinC
=2sin120°cosC-2cos120°sinC+sinC
=$\sqrt{3}$cosC+2sinC
=$\sqrt{7}$sin(C+θ),且θ=arctan$\frac{\sqrt{3}}{2}$,30°<C<90°,
∴30°<θ<45°
∴60°<C+θ<135°,
∴$\frac{\sqrt{2}}{2}$<sin(C+θ)≤1,
∴$\frac{\sqrt{14}}{2}$<$\sqrt{7}$sin(C+θ)≤$\sqrt{7}$,
∴2sinA+sinC的取值范围是($\frac{\sqrt{14}}{2}$,$\sqrt{7}$].

点评 本题考查了平面向量以及三角恒等变换和余弦定理的应用问题,解题的关键是充分利用余弦定理的性质,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知1<a<2,则函数f(x)=ax-2的零点属于区间(  )
A.(1,2)B.(2,4)C.$(\frac{1}{2},1)$D.$(\frac{1}{4},\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)可导,且$\underset{lim}{x→0}$$\frac{f(1)-f(1-x)}{2x}$=2,则f′(1)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y∈R,且3x2+2y2=6,则x+y的最大值是$\sqrt{5}$,x2+y2的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个项数为偶数的等比数列,所有项之和为偶数项之和的4倍,前3项之积为64.求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,线段AB过x轴正半轴上一定点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A,O,B三点作抛物线C.
(1)求抛物线C的标准方程;
(2)已知点P(n,2)为抛物线C上的点,过P(n,2)作倾斜角互补的两直线PS,PT,分别交抛物线C于S,T.求证:直线ST的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{AB}$=-2$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=3$\overrightarrow{a}$-3$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-$\overrightarrow{b}$,则直线AD与BC的位置关系是(  )
A.平行B.重合C.相交D.垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-3x+5,求f(-3)、f(1)、f($\sqrt{5}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于x的方程x2+(a+1)x+a+b+1=0(a≠0,a、b∈R)的两实根为x1,x2,若0<x1<1<x2<2,则$\frac{b}{a}$的取值范围是(-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案