精英家教网 > 高中数学 > 题目详情
如图,正三棱柱ABC-A1B1C1中,AA1=AB,E是侧棱AA1的中点.
(Ⅰ)证明:BC1⊥EC;
(Ⅱ)求二面角A-EC-B的大小.

【答案】分析:法一:
(Ⅰ)设O是AC的中点,连接OB、OC1.在正三棱柱中,OB⊥AC,OB⊥平面ACC1A1,OC1是BC1在面ACC1A1上的射影.△AEC≌△COC1,由此能够证明BC1⊥EC.
(Ⅱ)由(Ⅰ)知BO⊥平面AEC,作OF⊥EC,垂足为F,连接BF,则∠OFB为二面角A-EC-B的平面角.由此能求出二面角A-EC-B的大小.
法二:
(Ⅰ)在正三棱柱中,以AC的中点O为原点,建立空间直角坐标系,设AB=2,利用向量法能够证明BC1⊥EC.
(Ⅱ)求出平面AEC的一个法向量为.求出平面ECD的法向量.利用向量法能坟出二面角A-EC-B的大小.
解答:解法一:
(Ⅰ)证明:设O是AC的中点,连接OB、OC1
在正三棱柱中,OB⊥AC,OB⊥平面ACC1A1
∴OC1是BC1在面ACC1A1上的射影.
∴△AEC≌△COC1,∠AEC=∠COC1
又∠AEC+∠ACE=90°,
∴∠COC1+∠ACE=90°,OC1⊥EC,
∴BC1⊥EC.…(6分)
(Ⅱ)解:由(Ⅰ)知BO⊥平面AEC,
作OF⊥EC,垂足为F,连接BF,
则∠OFB为二面角A-EC-B的平面角.
不妨设AB=2,则
在Rt△BOF中,
.…(12分)
解法二:
(Ⅰ)证明:在正三棱柱中,以AC的中点O为原点,建立空间直角坐标系O-xyz如图.
设AB=2,则



∴BC1⊥EC.…(6分)
(Ⅱ)解:在空间直角坐标系O-xyz中,
平面AEC的一个法向量为
设平面ECD的法向量为
易知
,得
取x=1,得

∴二面角A-EC-B的大小为.…(12分)
点评:本题考查异面直线垂直的证明,考查二面角的求法,解题时要认真审题,合理地化空间问题为平面问题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案