精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,AC=BC=CC1=1,且AC⊥BC,过C1作截面分别交AC,BC于E,F,且二面角C1-EF-C为60°,则三棱锥C1-EFC体积的最小值为(  )
分析:先根据二面角求出在三角形CEF斜边EF边上的高,设CE=a,CF=b,则EF=
a2+b2
,然后等面积建立等式,再利用基本不等式求出ab的最值,利用体积公式表示出三棱锥C1-EFC体积,从而求出体积的最小值.
解答:解:∵二面角C1-EF-C为60°
∴在三角形CEF斜边EF边上的高为
3
3

设CE=a,CF=b,则EF=
a2+b2

在三角形CEF中ab=
a2+b2
3
3
2ab
3

ab≥
2
3

三棱锥C1-EFC体积V=
1
3
× 
1
2
abCC1
=
1
6
ab
1
9

故选B.
点评:本题主要考查了二面角的应用,以及锥体的体积和基本不等式求最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案