精英家教网 > 高中数学 > 题目详情
17.定义在R上的函数f(x)(x≠1)满足f(x)+2f($\frac{x+2002}{x-1}$)=4015-x,则f(2004)=2005.

分析 利用赋值法,构造方程组,解方程即可得到结论.

解答 解:令x=2得f(2)+2f(2004)=4013,①,
令x=2004得f(2004)+2f(2)=2011.②,
①×2-②,3f(2004)=6015,
∴f(2004)=2005.
故答案为:2005

点评 本题主要考查函数值的计算,利用条件构造方程组是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆M的极坐标方程为$ρ=\sqrt{2}sin(θ+\frac{π}{4})$,现以极点为坐标原点,极轴为x轴正半轴,建立平面直角坐标系.
(1)求圆M的标准方程;
(2)过圆心M且倾斜角为$\frac{π}{4}$的直线l与椭圆$\frac{{x}^{2}}{2}+{y}^{2}=1$交于A,B两点,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.己知函数f(x)=x2+ax的图象在点A(l,f(1))处的切线l与直线x+3y-1=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2015的值为$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=f(x)与y=ax(a>0且a≠1)互为相反数,且f(2)=1,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点A(1,1),B(0,a),C(2,b)(a>0,b>0)三点共线,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项和为Sn,且满足4Sn-1=an2+2an,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}({a}_{n}+2)}$,数列{bn}的前n项和为Tn,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求离心率e=$\frac{\sqrt{5}}{2}$,过点P(3,-$\sqrt{2}$)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$,其中0<α<π,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)和向量$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$).
(1)设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$-$\overrightarrow{b}$|,求f(x)的解析式;
(2)若命题p:“?x∈[0,π],f(x)≥k”为真命题,求实数k的取值范围.

查看答案和解析>>

同步练习册答案