精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于A、B.
(Ⅰ) 若|AB|=$\frac{16}{3}$,求直线l的方程.
(Ⅱ) 求|AB|的最小值.并求出此时直线1的方程.

分析 (Ⅰ)设直线l的方程为:x+my-1=0,代入y2=4x,整理得,y2+4my-4=0,利用韦达定理和抛物线的定义,能够求出直线l的方程.
(Ⅱ)由(Ⅰ)知,|AB|=4(m2+1)≥4,由此能求出|AB|的最小值,并求出此时直线1的方程..

解答 解:(Ⅰ)设直线l的方程为:x+my-1=0,
代入y2=4x,整理得,y2+4my-4=0
设A(x1,y1),B(x2,y2),
则y1,y2是上述关于y的方程的两个不同实根,所以y1+y2=-4m
根据抛物线的定义知:
|AB|=x1+x2+2=(1-my1)+(1-my2)=4(m2+1)
若|AB|=$\frac{16}{3}$,则4(m2+1)=$\frac{16}{3}$,∴m=$±\frac{\sqrt{3}}{3}$
即直线l有两条,其方程分别为:x$±\frac{\sqrt{3}}{3}$y-1=0;
(Ⅱ)由(Ⅰ)知,|AB|=4(m2+1)≥4,
当且仅当m=0时,|AB|有最小值4.此时直线1的方程x-1=0.

点评 本题考查直线方程的求法,考查弦的最小值的求法.解题时要认真审题,仔细解答,注意抛物线简单性质、韦达定理等知识点的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.直线x+2y=5与直线x+2y=10间的距离是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知AD是△ABC的角平分线,且△ABD的面积与△ACD的面积比为3:2.
(1)求$\frac{sinB}{sinC}$的值;
(2)若AD=3$\sqrt{2}$,∠C=2∠B,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a>0,b>0,点(1,2)在直线$\frac{x}{a}$+$\frac{y}{b}$=1上,则a十2b取最小值时,$\frac{b}{a}$=(  )
A.2B.1C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,一条边利用足够长的墙,用12m长的篱笆围出一块五边形的苗圃.已知EA⊥AB,CB⊥AB,∠C=∠D=∠E,设CD=DE=x(m),五边形的面积为S.
(1)写出苗圃面积S与x的函数关系式;
(2)当x为何值时,苗圃的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.试将以下各式化为Asin(α+β)(A>0,β∈[-π,π])的形式.
(1)sinα+cosα;
(2)-cosα-sinα;    
(3)$\sqrt{3}$sinα-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=sin2x+\sqrt{3}cos2x$在区间[0,π]上的零点之和是(  )
A.$\frac{2π}{3}$B.$\frac{7π}{12}$C.$\frac{7π}{6}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow{a}$、$\overrightarrow{b}$是已知向量,若2($\overrightarrow{x}$+$\overrightarrow{a}$)-3($\overrightarrow{x}$-$\overrightarrow{b}$)=0,则$\overrightarrow{x}$=$2\overrightarrow{a}+3\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)=cosx,则f(π)+f′($\frac{π}{2}$)=-2.

查看答案和解析>>

同步练习册答案