精英家教网 > 高中数学 > 题目详情

已知正实数满足方程,则当取最小值时,的值为

A.          B.           

C.          D.

  B


解析:

:原方程整理成的二次方程:

 

 .选

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(2)已知正实数a、b、c满足a2+4b2+c2=3.
(I)求a+2b+c的最大值;
(II)若不等式|x-5|-|x-1|≥a+2b+c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题部分
(1)(选修4-4 参数方程与极坐标)(本小题满分7分)
在极坐标系中,过曲线L:ρsin2θ=2acosθ(a>0)外的一点A(2
5
,π+θ)
(其中tanθ=2,θ为锐角)作平行于θ=
π
4
(ρ∈R)
的直线l与曲线分别交于B,C.
(Ⅰ) 写出曲线L和直线l的普通方程(以极点为原点,极轴为x轴的正半轴建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比数列,求a的值.
(2)(选修4-5 不等式证明选讲)(本小题满分7分)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ) 求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数满足方程,则当取最小值时,的值为

A.          B.           

C.          D.

查看答案和解析>>

同步练习册答案