精英家教网 > 高中数学 > 题目详情
4.函数f(x)=x2(x≤-1)的反函数是f-1(x)=-$\sqrt{x}$,x≥1.

分析 先求出x=-$\sqrt{y}$,y≥1,x,y互换,得反函数f-1(x).

解答 解:∵函数f(x)=y=x2(x≤-1),
∴x=-$\sqrt{y}$,y≥1,
x,y互换,得反函数f-1(x)=-$\sqrt{x}$,x≥1.
故答案为:-$\sqrt{x}$,x≥1.

点评 本题考查反函数的求法,是基础题,解题时要认真审题,注意反函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=-x2+2x-af(x)(a∈R),x1,x2是两个任意实数且x1≠x2
(1)求函数f(x)的图象在x=0处的切线方程;
(2)若函数g(x)在R上是增函数,求a的取值范围;
(3)求证:$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在R上的偶函数f(x),当x≥0时,f(x)=x2-4x
(1)求f(-2)的值;
(2)当x<0时,求f(x)的解析式;
(3)设函数f(x)在[t-1,t+1](t>1)上的最大值为g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.不使用计算器,计算下列各题:
(1)${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$;
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{({-9.8})^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等腰三角形的周长为常数l,底边长为y,腰长为x,则函数y=f(x)的定义域为($\frac{l}{4}$,$\frac{l}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若两个集合{1,a},{a2}满足{1,a}∪{a2}={1,a}则实数a=-1或0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*.
(1)求数列{an},{bn}的通项an和bn
(2)求证:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$;
(3)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线的倾斜角为30°,则该双曲线的离心率为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案