分析 利用抛物线的定义,|PF|=||PA|,设F在l上的射影为F′,依题意,可求得点P的坐标,从而可求得|AF′|,可求得点A的坐标,即可求出$\overrightarrow{AF}$•$\overrightarrow{FP}$的值.
解答 解:∵抛物线y2=4x的焦点为F,准线为l,
∴|PF|=||PA|,F(1,0),准线l的方程为:x=-1,
设F在l上的射影为F′,又PA⊥l,
设P(m,n),依|PF|=|PA|得,m+1=4,
解得m=3,n=2$\sqrt{3}$,
∵PA∥x轴,
∴点A的纵坐标为2$\sqrt{3}$,点A的坐标为(-1,2$\sqrt{3}$),
则$\overrightarrow{AF}$•$\overrightarrow{FP}$=(2,-2$\sqrt{3}$)•(2,2$\sqrt{3}$)=4-12=-8.
故答案为:-8.
点评 本题考查抛物线的定义、方程和简单性质,考查转化思想,考查解三角形的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,$\frac{1}{3}$) | B. | (-1,$\frac{1}{3}$] | C. | (-1,$\frac{1}{3}$) | D. | [-1,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 平行于同一向量的两个向量是共线向量 | |
B. | 单位向量都相等 | |
C. | $\overrightarrow{a}$∥$\overrightarrow{b}$?存在唯一的实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$ | |
D. | 与非零向量$\overrightarrow{a}$相等的向量有无数个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | e | B. | e2 | C. | e3 | D. | e4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com