精英家教网 > 高中数学 > 题目详情
15.函数f(x)=$\frac{1}{2}$x2-lnx的递减区间为(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=x-$\frac{1}{x}$=$\frac{{x}^{2}-1}{x}$,
令f′(x)<0,解得:0<x<1,
故函数f(x)在(0,1)递减,
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{x}^{2}+ax-lnx}{{e}^{x}}$(其中e是自然对数的底数,a∈R).
( I)若曲线f(x)在x=l处的切线与x轴不平行,求a的值;
(Ⅱ)若函数f(x)在区间(0,1]上是单调函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知P为抛物线y2=4x上任意一点,抛物线的焦点为F,点A(2,1)是平面内一点,则|PA|+|PF|的最小值为(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C所对的边分别为a,b,c满足a≠b,2sin(A-B)=asinA-bsinB
(Ⅰ)求边c
(Ⅱ)若△ABC的面积为1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn为等比数列{an}的前n项和,若8a2+a5=0,则$\frac{{S}_{5}}{{S}_{2}}$等于(  )
A.$\frac{11}{3}$B.5C.-8D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a2-a<2,且a∈N*,求函数f(x)=x+$\frac{2a}{x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=4x2的焦点到准线的距离为(  )
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的首项a1=1,前n项和为Sn,且满足2an+1+Sn=2,则满足$\frac{1001}{1000}<\frac{{{S_{2n}}}}{S_n}<\frac{11}{10}$的n的最大值是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.l是经过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)焦点F且与实轴垂直的直线,A,B是双曲线C的两个顶点,点在l存在一点P,使∠APB=60°,则双曲线离心率的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案