精英家教网 > 高中数学 > 题目详情
11.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,CC1=2,则异面直线A1B与AC所成角的余弦值是$\frac{\sqrt{6}}{6}$.

分析 先通过平移将两条异面直线平移到同一个起点A1,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角的余弦值.

解答 解:连结BC1,∵AC∥A1C1
∴∠C1A1B是异面直线A1B与AC所成角(或所成角的补角),
∵在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,
∴AB=$\sqrt{2}$,A1B=$\sqrt{6}$,BC1=$\sqrt{5}$,A1C1=1,
∴cos∠C1A1B=$\frac{1+6-5}{2×1×\sqrt{6}}$=$\frac{\sqrt{6}}{6}$,
∴异面直线A1B与AC所成角的余弦值为$\frac{\sqrt{6}}{6}$.
故答案为$\frac{\sqrt{6}}{6}$.

点评 本题考查异面直线所成角的求法,考查余弦定理的运用,作出异面直线A1B与AC所成角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,正六边形ABCDEF中,$\overrightarrow{BC}$$+\overrightarrow{DE}$$+\overrightarrow{AF}$等于(  )
A.$\overrightarrow{EB}$B.$\overrightarrow{BE}$C.$\overrightarrow{AD}$D.$\overrightarrow{CF}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某校高二年级共有24个班,为了解该年级学生对数学的喜爱程度,将每个班编号,依次为1到24,现用系统抽样方法抽取4个班进行调查,若抽到的编号之和为52,则抽取的最小编号是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x、y满足约束条件$\left\{\begin{array}{l}{y≤x}&{\;}\\{x+y≥2}&{\;}\\{y≥3x-6}&{\;}\end{array}\right.$,则目标函数Z=4x+y+3的最小值为(  )
A.5B.8C.11D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=45°且AB=2,求三棱锥F-AEC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的不等式|x+1|-|x-2|>a2+2a有实数解,则实数a的取值范围为(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,PA=AD,E、F分别是棱PD、BC的中点.
(1)求证:EF∥平面PAB;
(2)求直线PF与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xoy中,直线y=2x+b是曲线y=2alnx的切线,则当a>0时,实数b的最小值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正四面体A-BCD的棱长为1,且$\overrightarrow{AE}$=2$\overrightarrow{EB}$,$\overrightarrow{AF}$=2$\overrightarrow{FD}$,则$\overrightarrow{EF}$•$\overrightarrow{DC}$=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案