精英家教网 > 高中数学 > 题目详情

(本小题满分10分)    
已知圆和圆的极坐标方程分别为
(1)把圆和圆的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

(1),所以;因为
所以,所以 ---5分
(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为.化为极坐标方程为,即. ---10分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1) 在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.已知在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|.
(2) 某旅游景点给游人准备了这样一个游戏,他制作了“迷尼游戏板”:在一块倾斜放置的矩形胶合板上钉着一个形如“等腰三角形”的八行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙,…,第8行9个铁钉之间有8个空隙(如图所示).东方庄家的游戏规则是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付给庄家2元.若小球到达①②③④号球槽,分别奖4元、2元、0元、-2元.(一个玻璃球的滚动方式:通过第1行的空隙向下滚动,小球碰到第二行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙.以后小球按类似方式继续往下滚动,落入第8行的某一个空隙后,最后掉入迷尼板下方的相应球槽内).恰逢周末,某同学看了一个小时,留心数了数,有80人次玩.试用你学过的知识分析,这一小时内游戏庄家是赢是赔? 通过计算,你得到什么启示?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是为参数)。
(1)  求极点在直线上的射影点的极坐标;
(2)  若分别为曲线、直线上的动点,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,D、E分别是△ABC的边AB、AC上的点,DE∥BC,
=2,那么△ADE与四边形DBCE的面积比是(  )

A.             B.          C.         D. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)选修4—4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:直线与曲线分别交于
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为X轴的正半轴,建立平面直角坐标系,直线的参数方程是:,求直线与曲线C相交所称的弦的弦长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求过圆的圆心且与极轴垂直的直线的极坐标方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题为选做题,满分10分)
设点分别是曲线上的动点,求动点间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,⊙O内切于△ABC,切点分别为D、E、F.已知∠B=50°,∠C=60°,连接OE、OF、DE、DF,那么∠EDF等于

A.40°          B.55°
C.65°          D.70°

查看答案和解析>>

同步练习册答案