【题目】已知函数(其中)
(Ⅰ) 若在其定义域内为单调递减函数,求的取值范围;
(Ⅱ) 是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,=2.71828…).
【答案】(Ⅰ);(Ⅱ) .
【解析】
试题分析:(Ⅰ)首先求得导函数,然后分、讨论函数的单调性,由此求得的取值范围;(Ⅱ) 首先求得导函数,然后分、讨论函数的单调性并求得其极值,然后根据各段函数的最值求得的取值范围.
试题解析:(Ⅰ) 由于,其中,,
只需在时恒成立,
①当时,,于是在为减函数,
②当时,由在时恒成立,即在恒成立,
可知当时,,
由得,这与不符,舍去.
综上所述,的取值范围是.
(Ⅱ) .
(ⅰ) 当时,,于是在为减函数,则在也为减函数,
知恒成立,不合题意,舍去
(ⅱ) 当时,由得.列表得
x | (0,) | (,) | |
+ | 0 | - | |
↗ | 极大值 | ↘ |
①若,即,此时在上单调递减,
知,而,
于是恒成立,不合题意,舍去.
②若,即时,
此时在(,上为增函数,在(,)上为减函数,
要使在恒有恒成立,则必有
则所以
由于,则,所以.
综上所述,存在实数,使得恒成立
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过作直线交椭圆于两点,使,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为2,左、右顶点分别为,是椭圆上一点,记直线的斜率为,且有.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,以为直径的圆经过原点,且线段的垂直平分线在轴上的截距为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;③后续保养的平均费用是每单位元(试剂的总产量为单位,).
(1)把生产每单位试剂的成本表示为的函数关系,并求的最小值;
(2)如果产品全部卖出,据测算销售额(元)关于产量(单位)的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,点为坐标原点,若椭圆与曲线的交点分别为(下上),且两点满足.
(1)求椭圆的标准方程;
(2)过椭圆上异于其顶点的任一点,作的两条切线,切点分别为,且直线在轴、轴上的截距分别为,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆及点,.
(1)若直线平行于,与圆相交于,两点,,求直线的方程;
(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记表示中的最大值,如.已知函数,.
(1)设,求函数在上零点的个数;
(2)试探究是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com