精英家教网 > 高中数学 > 题目详情

【题目】定义在D上的函数 ,若满足: ,都有 成立,则称 D上的有界函数,其中M称为函数 的上界.
(I)设 ,证明: 上是有界函数,并写出 所有上界的值的集合;
(II)若函数 上是以3为上界的有界函数,求实数a的取值范围.

【答案】解:(I)证明:因为

所以 上是增函数. 所以 . 即

所以 ,所以 是有界函数.

所以,上界M满足M≥1,所有上界M的集合为 ..

(II)解:因为函数 上是以3为上界的有界函数,

所以 上恒成立.

所以

,则 ,所以 上恒成立,

所以, 上恒成立,

,则 上是减函数,

所以

,则 上是增函数,

所以 ,.

所以,实数a的取值范围


【解析】(1)由题意结合函数的单调性即可得证结论故 f ( x ) 所有上界的值得集合是 [ 1 , + ∞ )。(2)利用题意得到关于a的不等式求解不等式即得a的取值范围。
【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式 恒成立,则实数 的取值范围是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F分别是PB,BC的中点.
求证:
(1)PC∥平面DEF;
(2)平面PBC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设abc是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据abc的方差最小时,a+b+c的值为( )
A.252或253
B.253或254
C.254或255
D.267或268

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲参加ABC三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.

科目A

科目B

科目C

(I)求甲至少有一个科目考试成绩合格的概率;
(Ⅱ)设甲参加考试成绩合格的科目数量为X , 求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:在定义域内存在实数,使得成立,则称函数为“的饱和函数”.给出下列四个函数:①;②; ③;④.其中是“的饱和函数”的所有函数的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的上方,且曲线 上的任意一点到点 的距离比到直线 的距离都小1.
(Ⅰ)求曲线 的方程;
(Ⅱ)设 ,过点 的直线与曲线 相交于 两点.
①若 是等边三角形,求实数 的值;
②若 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月纳税所得额,此项税款按下表分段累计计算:

已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?

设王先生的月工资、薪金所得为元,当月应缴纳个人所得税为元,写出的函数关系式;

(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的个工资、薪金所得为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其导函数f′(x)的部分图象如图所示,则函数f(x)的解析式为(
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

同步练习册答案