精英家教网 > 高中数学 > 题目详情

【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:

(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?

(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.

附:

【答案】(Ⅰ)表如解析所示;(Ⅱ) 有的把握认为“经常使用微信与年龄有关”; (Ⅲ) .

【解析】试题分析:(1)由已知可得,该公司员工中使用微信的有人,进而得到使用微信的人数和青年人的人数等,从而列出的列联表,;

(2)根据列联表的数据,求解的值,得出结论;

(3)从“经常使用微信”的人中抽取人,其中,青年人有人,中年人有,进而利用古典概率,即可求解概率。

试题解析:(Ⅰ)由已知可得,该公司员工中使用微信的有人,

经常使用微信的有人,其中青年人有人,使用微信的人中青年人有人.

所以列联表为:

青年人

中年人

合计

经常使用微信

不经常使用微信

合计

(Ⅱ)将列联表中数据代入公式可得:,由于

所以有的把握认为“经常使用微信与年龄有关”.

(Ⅲ)从“经常使用微信”的人中抽取人,其中,青年人有人,

中年人有

名青年人的编号分别为,记名中年人的编号分别为

则从这人中任选人的基本事件有,共个,其中选出的人均是青年人的基本事件有,共个,故所求事件的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面内有一个△ABC和一点O(如图),线段OA,OB,OC的中点分别为E,F,G,BC,CA,AB的中点分别为L,M,N,设 = = =

(1)试用 表示向量
(2)证明:线段EL,FM,GN交于一点且互相平分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn满足:Sn=n2 , 等比数列{bn}满足:b2=2,b5=16
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内的动点P到定直线lx的距离与点P到定点F(0)之比为.

(1)求动点P的轨迹C的方程;

(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB,交(1)中轨迹C于点AB,且直线ANBN的斜率都存在,分别为k1k2,问k1·k2是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

购买意愿强

购买意愿弱

合计

20~40岁

大于40岁

合计

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2+5x﹣2>0的解集是
(1)求实数a的值;
(2)求不等式ax2﹣5x+a2﹣1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)对任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)证明:

查看答案和解析>>

同步练习册答案