精英家教网 > 高中数学 > 题目详情

【题目】世界读书日又称世界图书日,设立的目的是希望世界各地的人,无论你是年老还是年轻,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出巨大贡献的文学、文化、科学、思想大师们,都能保护知识产权.某单位共有600人,其年龄与人数分布表如下:

年龄段

人数(单位:人)

150

210

180

60

约定:年龄在为青年人,在为中老年人.今年年初,该单位开展每天阅读1小时活动,为了了解员工阅读1小时是否与年龄相关,一个月后按照分层抽样抽取30人进行调查.

1)抽出的青年人与中老年人数量分别为多少?并估算单位这600人的平均年龄;

2)若所抽取出的青年人与中老年人中分别有6人和7人平均每天阅读达1小时,其余人都没达1小时.完成下列2×2列联表,并回答能否由90%的把握认为年龄与阅读达1小时有关?

阅读达1小时

阅读没达1小时

总计

青年

6

中年

7

总计

30

参考公式:

临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】1181242.5;(2)列联表见解析,没有90%的把握认为年龄与阅读达1小时有关.

【解析】

1)由已知求得青年人与中老年人数量之比,然后按比例求出抽取的人数.根据人数分布表中数据中间点作为这组数据的估计值计算总均值.

(2)由(1)可得列联表中缺少的数据,然后根据公式计算可得.

1)由题意,单位青年人与中老年人数量之比为,则由分层抽样可得,

抽出的青年人数量为人,中老年人数量为人;

600人的平均年龄为.

22×2列联表如下:

阅读达1小时

阅读没达1小时

总计

青年

6

12

18

中年

7

5

12

总计

13

17

30

计算观测值

∴没有90%的把握认为年龄与阅读达1小时有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的列联表,并据此判断是否有以上的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.

温度/

20

22

24

26

28

30

32

产卵数/

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根据散点图判断,哪一个更适宜作为该昆虫的产卵数与温度的回归方程类型?(给出判断即可,不必说明理由).

2)根据表中数据,建立关于的回归方程;(保留两位有效数字)

3)根据关于的回归方程,估计温度为33℃时的产卵数.

(参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)若函数的图象均在轴上方,求的取值范围;

2)记为函数上的零点,若存在唯一的,使得,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 分别为 的中点.

(1)求证: 平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点.

1)求证:平面

2)求二面角的余弦值;

3)试问线段上是否存在点,使与面所成角的正弦值为?若存在,求出此时的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点

(1)求椭圆及抛物线的方程;

(2)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

同步练习册答案