精英家教网 > 高中数学 > 题目详情
已知点P为椭圆和双曲线的一个交点,点F1、F2分别是椭圆的左、右焦点,则∠F1PF2的余弦值是( )
A.0
B.
C.1
D.
【答案】分析:由椭圆和双曲线的定义,得到|PF1|+|PF2|=10且||PF1|-|PF2||=6,联解得到|PF1|2+|PF2|2=68且2|PF1|•|PF2|=32,再算出椭圆的焦距,利用余弦定理加以计算即可算出∠F1PF2的余弦值.
解答:解:根据椭圆的定义,可得|PF1|+|PF2|=2a=10…①
由双曲线的定义,可得||PF1|-|PF2||=2a'=6…②
①②联解,得|PF1|2+|PF2|2=68且2|PF1|•|PF2|=32
又∵点F1、F2分别是椭圆的左、右焦点,
∴|F1F2|=2=8,可得|F1F2|2=64
△F1PF2中,cos∠F1PF2==
故选:C
点评:本题在双曲线与椭圆中,求△F1PF2中cos∠F1PF2的值.着重考查了椭圆、双曲线的定义与标准方程和余弦定理解三角形等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
m2
+
y2
16
=1(m>0)
和双曲线
x2
n2
-
y2
9
=1(n>0)
有相同的焦点F1、F2,点P为椭圆和双曲线的一个交点,则|PF1|•|PF2|的值是
25
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市质检) 已知点P为椭圆和双曲线的一个交点,点F1F2分别是椭圆的左、右焦点,则∠F1PF2的余弦值是        .

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P为椭圆和双曲线的一个交点,点F1F2分别是椭圆的左、右焦点,则∠F1PF2的余弦值是        .

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P为椭圆和双曲线的一个交点,点F1F2分别是椭圆的左、右焦点,则∠F1PF2的余弦值是        .

查看答案和解析>>

同步练习册答案