1£®ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
£¨1£©Èôax2-ax+1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôò0£¼a£¼4£»
£¨2£©Èñ½ÇÈý½ÇÐΡ÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬Ôò$\frac{1}{2}$£¼sinB£¼1£»
£¨3£©ÒÑÖªk¡ÊR£¬Ö±Ïßy-kx-1=0ÓëÍÖÔ²$\frac{x^2}{5}+\frac{y^2}{m}=1£¨{m£¾0}£©$ºãÓй«¹²µã£¬Ôòm¡Ê[1£¬5£©£»
£¨4£©¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+y£©=f£¨x£©+f£¨y£©£¬µ±x?0ʱ£¬f£¨x£©£¾0£¬Ôòº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÓÐ×îСֵf£¨b£©£®
ÆäÖеÄÕæÃüÌâÊÇ£¨2£©£¨4£©£®

·ÖÎö Çó³öʹax2-ax+1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢µÄaµÄ·¶Î§£¬¿ÉÅжϣ¨1£©£»¸ù¾ÝÈñ½ÇÈý½ÇÐΡ÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬Çó³öBµÄ·¶Î§£¬ÔÙÓÉÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿ÉÅжϣ¨2£©£»Ö±Ïßy-kx-1=0ºã¹ý£¨0£¬1£©µã£¬¸ù¾ÝÌâÒâ¿ÉµÃ£¨0£¬1£©ÔÚÍÖÔ²ÉÏ£¬»òÔÚÍÖÔ²ÄÚ£¬½ø¶øÇó³ömµÄ·¶Î§£¬¿ÉÅжϣ¨3£©£» ¸ù¾ÝÌâÒâµÃµ½f£¨x£©=kx£¬£¨k£¼0£©£¬½ø¶ø½áºÏÕý±ÈÀýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿ÉÅжϣ¨4£©£®

½â´ð ½â£º£¨1£©Èôa=0£¬Ôòax2-ax+1=1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢£¬
Èôa¡Ù0£¬ÔòÓÉax2-ax+1=1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢µÃ$\left\{\begin{array}{l}a£¾0\\¡÷={a}^{2}-4a£¼0\end{array}\right.$£¬½âµÃ0£¼a£¼4£»
¹ÊÈôax2-ax+1£¾0ÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôò0¡Üa£¼4£¬¹Ê£¨1£©´íÎó£»
£¨2£©Èñ½ÇÈý½ÇÐΡ÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬Ôò$\frac{¦Ð}{6}$£¼B£¼$\frac{¦Ð}{2}$£¬Ôò$\frac{1}{2}$£¼sinB£¼1£¬¹Ê£¨2£©ÕýÈ·£»
£¨3£©Ö±Ïßy-kx-1=0ºã¹ý£¨0£¬1£©µã£¬ÈôÖ±Ïßy-kx-1=0ÓëÍÖÔ²$\frac{x^2}{5}+\frac{y^2}{m}=1£¨{m£¾0}£©$ºãÓй«¹²µã£¬
Ôò£¨0£¬1£©ÔÚÍÖÔ²ÉÏ£¬»òÔÚÍÖÔ²ÄÚ£¬Ôòm¡Ê[1£¬5£©¡È£¨5£¬+¡Þ£©£¬¹Ê£¨3£©´íÎó£»
£¨4£©¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+y£©=f£¨x£©+f£¨y£©£¬Ôòº¯ÊýΪÕý±ÈÀýÐͺ¯Êý£¬¼´y=kx£¬
Óɵ±x£¼0ʱ£¬f£¨x£©£¾0£¬¿ÉµÃk£¼0£¬¼´º¯ÊýΪ¼õº¯Êý£¬Ôòº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÓÐ×îСֵf£¨b£©£¬¹Ê£¨4£©ÕýÈ·£®
¹ÊÕæÃüÌâµÄÐòºÅΪ£º£¨2£©£¨4£©£¬
¹Ê´ð°¸Îª£º£¨2£©£¨4£©

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬴ËÀàÌâÐÍÍùÍù×ۺϽ϶àµÄÆäËü֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¼¯ºÏA={x|-4¡Üx¡Ü-2}£¬¼¯ºÏB={x|x-a¡Ý0}
£¨1£©ÈôA¡ÉB=A£¬ÇóaµÄÈ¡Öµ·¶Î§
£¨2£©ÈôÈ«¼¯U=R£¬ÇÒA⊆∁uB£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÓÐÏÂÁÐÃüÌ⣺
¢ÙÉ輯ºÏ M={x|0£¼x¡Ü3}£¬N={x|0£¼x¡Ü2}£¬Ôò¡°a¡ÊM¡±ÊÇ¡°a¡ÊN¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
¢ÚÃüÌâ¡°Èôa¡ÊM£¬Ôòb∉M¡±µÄÄæ·ñÃüÌâÊÇ£º¡°Èôb¡ÊM£¬Ôòa∉M¡±
¢ÛÈôp¡ÅqÊÇÕæÃüÌ⣬Ôòp£¬q¶¼ÊÇÕæÃüÌâ
¢ÜÃüÌâp£º¡°?x0¡ÊR£¬x02-x0-1£¾0¡±µÄ·ñ¶¨?p£º¡°?x¡ÊR£¬x2-x-1¡Ü0¡±
ÔòÉÏÊöÃüÌâÖÐΪÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢Û¢ÜB£®¢Ú¢ÜC£®¢Ù¢Û¢ÜD£®¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èôº¯Êýf£¨x£©=£¨a+1£©x2-2£¨a-1£©x+3£¨a-1£©£¾0¶ÔÓÚÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÏÂÁÐÎå¸öÃüÌ⣺
¢Ù¡°a£¾2¡±ÊÇ¡°f£¨x£©=ax-sinxΪRÉϵÄÔöº¯Êý¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢Úº¯Êýf£¨x£©=-$\frac{1}{3}{x^3}$+x+1ÓÐÁ½¸öÁãµã£»
¢Û¼¯ºÏA={2£¬3}£¬B={1£¬2£¬3}£¬´ÓA£¬BÖи÷ÈÎÒâÈ¡Ò»¸öÊý£¬ÔòÕâÁ½ÊýÖ®ºÍµÈÓÚ4µÄ¸ÅÂÊÊÇ$\frac{1}{3}$£»
¢Ü¶¯Ô²C¼ÈÓ붨Բ£¨x-2£©2+y2=4ÏàÍâÇУ¬ÓÖÓëyÖáÏàÇУ¬ÔòÔ²ÐÄCµÄ¹ì¼£·½³ÌÊÇy2=8x£¨x¡Ù0£©£»
¢ÝÈôº¯Êýf£¨x£©=aln£¨x+2£©+$\frac{x}{{{x^2}+1}}$£¨x£¾-2£¬a¡ÊR£©ÓÐ×î´óÖµ£¬Ôòf£¨x£©Ò»¶¨ÓÐ×îСֵ£®ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊǢ٢ۢݣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®²»µÈʽ$\frac{1+|x|}{|x|-1}$¡Ý3µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®{x|-2¡Üx¡Ü2}B£®{x|-2¡Üx£¼-1»ò-1£¼x£¼1»ò1£¼x¡Ü2}
C£®{x|x¡Ü2ÇÒx¡Ù¡À1}D£®{x|-2¡Üx£¼-1»ò1£¼x¡Ü2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄλͬѧ£¬ÔÚij¸öʱ¶ÎÄÚÿÈË»¥²»Öظ´µØ´ÓÓïÎÄ¡¢Êýѧ¡¢Ó¢Óï¡¢ÎÄ×ÛÕâËĸö¿ÆÄ¿ÖÐÑ¡ÔñÒ»¿Æ½øÐи´Ï°£®ÏÖÓÐÏÂÃæÎåÖÖ¾ùΪÕýÈ·µÄ˵·¨£º
A£®¼×²»ÔÚ¸´Ï°ÓïÎÄ£¬Ò²²»ÔÚ¸´Ï°Êýѧ£»B£®ÒÒ²»ÔÚ¸´Ï°Ó¢ÓҲ²»ÔÚ¸´Ï°ÓïÎÄ£»
C£®±û²»ÔÚ¸´Ï°ÎÄ×Û£¬Ò²²»ÔÚ¸´Ï°Ó¢ÓD£®¶¡²»ÔÚ¸´Ï°Êýѧ£¬Ò²²»ÔÚ¸´Ï°ÓïÎÄ£»
E£®Èç¹û¼×²»ÔÚ¸´Ï°Ó¢ÓÄÇô±û²»ÔÚ¸´Ï°ÓïÎÄ£®
¸ù¾ÝÒÔÉÏÐÅÏ¢£¬Ä³Í¬Ñ§ÅжÏÈçÏ£º
¢Ù¼×ÔÚ¸´Ï°Ó¢Óï  ¢ÚÒÒÔÚ¸´Ï°ÎÄ×Û  ¢Û±ûÔÚ¸´Ï°Êýѧ  ¢Ü¶¡ÔÚ¸´Ï°Ó¢Óï
ÔòÉÏÊöËùÓÐÅжÏÕýÈ·µÄÐòºÅÊǢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªsin¦Á-cos¦Á=$\sqrt{2}$£¬Ôòsin¦Á•cos¦Á=-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{3}$£¬a2=$\frac{7}{9}$£¬an+2=$\frac{4}{3}$an+1-$\frac{1}{3}$an£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{nan}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸