精英家教网 > 高中数学 > 题目详情

若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
且f(-2)>f(3),设m>-n>0.
(1) 试证明函数f(x)在(0,+∞)上是减函数;
(2) 试比较f(m)和f(n)的大小,并说明理由

(1)见解析;(2)f(m)<f(n)
(1)∵f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
∴对任意x∈R,恒有f(-x)=f(x),即a(-x)2+b(-x)+c=ax2+bx+c恒成立,
据此可求出b="0." f(x)=ax2+c.再根据f(-2)>f(3),且f(-2)=f(2),
得f(2)>f(3),因而a<0.且f(x)在(0,+∞)上是减函数..
(2)∵m>-n>0,∴f(m)<f(-n).,再根据f(-n)=f(n),可得f(m)<f(n)..
∵f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
∴对任意x∈R,恒有f(-x)=f(x),
即a(-x)2+b(-x)+c=ax2+bx+c恒成立.
∴2bx=0对任意x∈R恒成立.
∴b=0.
∴f(x)=ax2+c.
∵f(-2)>f(3),且f(-2)=f(2),
∴f(2)>f(3).
∴a<0.且f(x)在(0,+∞)上是减函数.
又∵m>-n>0,
∴f(m)<f(-n).
而f(-n)=f(n),
∴f(m)<f(n)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若二次函数f(x)=a
x
2
 
+bx+c(a≠0)
的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x0,使f[f(x0)]>x0
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数g(x)=a
x
2
 
-bx+c
的图象与直线y=-x也一定没有交点.
其中正确的结论是
①②④⑤
①②④⑤
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若二次函数f(x) =x2+ax+1没有不动点,则实数a的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)满足f(x+1)-f(x)=2xf(0)=1,则f(x)=________.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练5练习卷(解析版) 题型:填空题

若二次函数f(x)=ax2+bx+c(a0)的图象和直线y=x无交点,现有下列结论:①方程f(f(x))=x一定没有实数根;

②若a>0,则不等式f(f(x))>x对一切实数x都成立;

③若a<0,则必存在实数x0,使f(f(x0))>x0;

④若a+b+c=0,则不等式f(f(x))<x对一切实数都成立;

⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.

其中正确的结论是    (写出所有正确结论的编号). 

 

查看答案和解析>>

同步练习册答案