精英家教网 > 高中数学 > 题目详情

设有关于x的一元二次方程
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

;⑵.

解析试题分析:⑴先列举出满足条件“是从四个数中任取的一个数,是从三个数中任取的一个数”的所有的基本事件,再在基本事件中找到满足条件“”的基本事件的个数,用基本事件的个数除以总的事件的个数,所得的比值即是所求;⑵根据的取值画出满足条件“是从区间任取的一个数,是从区间任取的一个数”的长方形区域,以及在此条件下满足“”的基本事件的三角形区域,所求的概率即是两个图形的面积比.
试题解析:设事件为“方程有实根”.
时,方程有实根的充要条件为
基本事件共有个:
其中第一个数表示的取值,第二个数表示的取值.
事件中包含9个基本事件,                             4分
事件发生的概率为.                     6分
如图所示:

试验的全部结果所构成的区域为,对应长方形,8分
构成事件的区域为,对应图中的阴影部分,      10分
所以所求的概率为.               12分
考点:1.离散型随机变量及其应用;2.连续性随机变量及其应用;3.古典概型;4.几何概型

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(1)求第一次试验恰摸到一个红球和一个白球概率;
(2)记试验次数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某幼儿园在“六·一儿童节”开展了一次亲子活动,此次活动由宝宝和父母之一(后面以家长代称)共同完成,幼儿园提供了两种游戏方案:
方案一 宝宝和家长同时各抛掷一枚质地均匀的正方体骰子(六个面的点数分别是1,2,3,4,5,6),宝宝所得点数记为,家长所得点数记为;
方案二 宝宝和家长同时按下自己手中一个计算器的按钮(此计算器只能产生区间[1,6]的随机实数),宝宝的计算器产生的随机实数记为,家长的计算器产生的随机实数记为.
(Ⅰ)在方案一中,若,则奖励宝宝一朵小红花,求抛掷一次后宝宝得到一朵小红花的概率;
(Ⅱ)在方案二中,若,则奖励宝宝一本兴趣读物,求按下一次按钮后宝宝得到一本兴趣读物的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.

 
 
优秀
 
非优秀
 
合计
 
甲班
 

 
 
 
 
 
乙班
 
 
 

 
 
 
合计
 
 
 
 
 

 
(1)请完成上面的列联表;
(2)根据列联表的数据,能否有的把握认为成绩与班级有关系?
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的名学生从进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到号或号的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂三个车间共有工人1000人各车间男、女工人数如表:

已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.
(1)求x的值;
(2)现用分层抽样的方法在第一、第二、第三车间共抽取60名工人参加座谈分,问应在第三车间抽取多少名?
(3)已知y≥185,z≥185,求第三车间中女工比男工少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业招聘工作人员,设置三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.
(Ⅰ)求戊竞聘成功的概率;
(Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率;
(Ⅲ)记组测试通过的总人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若盒中装有同一型号的灯泡共只,其中有只合格品,只次品。
(1) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求次取到次品的概率;
(2) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:
(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;
(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

查看答案和解析>>

同步练习册答案