精英家教网 > 高中数学 > 题目详情
5.从点P(-1,2)引圆(x-1)2+(y+1)2=4的切线,则切线长是(  )
A.1B.2C.3D.4

分析 求出点P(-1,2)到圆心C(1,-1)的距离和圆的半径,利用勾股定理求得切线长.

解答 解:由题意可得,点P(-1,2)到圆心C(1,-1)的距离为$\sqrt{(1+1)^{2}+(-1-2)^{2}}$=$\sqrt{13}$,而圆的半径为2,
故切线长为$\sqrt{13-4}$=3,
故选:C.

点评 本题主要考查直线和圆相切的性质,勾股定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知集合P={x|x2-3x+b=0},Q={x|(x+1)(x2+3x-4)=0}
(1)若b=4是否存在集合M使得P?M⊆Q?若存在,求出所有符合题意的集合M,若不存在,请说明理由
(2)P能否成为Q的一个子集?若能,求出b的值或取值范围,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)在[4,+∞)上是减函数,则a的取值范围为(  )
A.(-∞,-8)B.(-8,0)C.(-8,8)D.(-8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)计算:$(\sqrt{8})^{-\frac{2}{3}}-(3π)^{0}+\sqrt{(-2)^{2}}$
(2)已知指数函数f(x)=ax(a>0且a≠1)图象过点(1,2),g(x)=f(x-1)-1,求函数g(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在x轴、y轴上截距分别是2、-3的直线的方程为(  )
A.3x-2y+6=0B.3x+2y+1=0C.3x-2y-6=0D.3x-2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一直线经过点P(-9,-1)被圆x2+y2+10x+10y+25=0截得的弦长为6,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,Sn为其前n项和,若a3=8,则S5=(  )
A.16B.24C.32D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={x|2<x<10},B={x|5-a<x<a},若A∪B=A,则实数a的取值范围是a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用1,2,3,4排成数字不重复的四位数,若已知1、2相邻,则1、3相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案