分析 由条件利用同角三角函数的基本关系、二倍角公式化简所给的式子,证明2sin2α•sin2β+2cos2α•cos2β-cos2α•cos2β=1即可.
解答 解:∵cos2αcos2β=(cos2α-sin2α)(cos2β-sin2β)
=cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β,
∴2sin2α•sin2β+2cos2α•cos2β-cos2α•cos2β
=2sin2α•sin2β+2cos2α•cos2β-(cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β)
=cos2α•cos2β+sin2α•sin2β+cos2αsin2β+sin2αcos2β
=(cos2α•cos2β+cos2αsin2β)+(sin2α•sin2β+sin2αcos2β)
=cos2α+sin2α=1,
故得证.
点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (-∞,2] | B. | (-∞,4] | C. | [2,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | (0,1)∪(1,+∞) | C. | (0,1) | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年河北冀州市高二理上月考三数学试卷(解析版) 题型:解答题
已知函数的图象经过点,点关于直线的对称点在的图象上.
(Ⅰ)求函数的解析式;
(Ⅱ)令,求的最小值及取得最小值时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com