精英家教网 > 高中数学 > 题目详情
13.求证:2sin2α•sin2β+2cos2α•cos2β=1+cos2α•cos2β.

分析 由条件利用同角三角函数的基本关系、二倍角公式化简所给的式子,证明2sin2α•sin2β+2cos2α•cos2β-cos2α•cos2β=1即可.

解答 解:∵cos2αcos2β=(cos2α-sin2α)(cos2β-sin2β)
=cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β,
∴2sin2α•sin2β+2cos2α•cos2β-cos2α•cos2β
=2sin2α•sin2β+2cos2α•cos2β-(cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β)
=cos2α•cos2β+sin2α•sin2β+cos2αsin2β+sin2αcos2β
=(cos2α•cos2β+cos2αsin2β)+(sin2α•sin2β+sin2αcos2β)
=cos2α+sin2α=1,
故得证.

点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列f(x)=x4+(2-a)x2+x2(lnx)2+1,x>0,若f(x)≥0恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,4]C.[2,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)若f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{{x}^{2}-2x+1(x>0)}\end{array}\right.$,g(x)=f(x)-k有3个零点,则实数k的取值范围是(  )
A.(1,+∞)B.(0,1)∪(1,+∞)C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}中,a1=6,且当n≥2时,$\frac{1}{3}$an=an-1+$\frac{1}{n}$an-1
(1)求证:数列{$\frac{{a}_{n}}{n+1}$}是等比数列;
(2)若对任意n∈N*,不等式3n2-2n-5<(2-λ)an恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:关于x的方程sin(cosx)=x在区间(0,$\frac{π}{2}$)内有唯一的实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求经过两直线2x+y-8=0与x-2y+1=0的交点,且在y轴上的截距为在x轴上截距的两倍的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列说法正确的有(2).
(1)正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零;
(2)三角形的两内角α,β满足sinα•cosβ<0,则此三角形必为钝角三角形;
(3)对任意的角α,都有|sinα+cosα|=|sinα|+|cosα|;
(4)若cosα与tanα同号,则α是第二象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知过点P(t,0)(t>0)的直线l被圆C:x2+y2-2x+4y-4=0截得弦AB长为4,若直线l唯一,则该直线的方程为x+2y-2=0.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二理上月考三数学试卷(解析版) 题型:解答题

已知函数的图象经过点,点关于直线的对称点的图象上.

(Ⅰ)求函数的解析式;

(Ⅱ)令,求的最小值及取得最小值时的值.

查看答案和解析>>

同步练习册答案