精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,上的点,平面.

(1)求证:平面

(2)若,且,求三棱锥的体积.

【答案】(1)见解析;(2)

【解析】

试题分析】(1)运用线面垂直判定定理推证;(2)先求三棱锥的高与底面面积再运用三棱锥的体积公式求解:

(1)连结ED

∵平面AB1C∩平面A1BD=EDB1C∥平面A1BD

B1CED

EAB1中点,∴DAC中点,

AB=BC, ∴BDAC

【法一】:由A1A⊥平面ABC平面ABC,得A1ABD②,

由①②及A1AAC是平面内的两条相交直线,得BD⊥平面.

【法二】:由A1A⊥平面ABCA1A平面

∴平面⊥平面ABC ,又平面 平面ABC=AC,得BD⊥平面.

(2)由BC=BB1=1,

由(1)知,又,

,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如表:

损坏餐椅数

未损坏餐椅数

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

80

320

400

求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

请说明是否有以上的把握认为损毁餐椅数量与学习雷锋精神

有关?参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在函数)的所有切线中,有且仅有一条切线与直线垂直.

(1)求的值和切线的方程;

(2)设曲线在任一点处的切线倾斜角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:

0

1

2

3

0

0.7

1.6

3.3

为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cvQ=0.5vaQklogavb

(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;

(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.

(1)求曲线的极坐标方程;

(2)在曲线上取两点于原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;②在区间单调递减;

个零点;④的最大值为.

其中所有正确结论的编号是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

某产品按行业生产标准分成8个等级,等级系数X依次为1,2……8,其中X≥5为标准AX≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6/件;乙厂执行标准B生产该产品,产品的零售价为4/件,假定甲、乙两厂得产品都符合相应的执行标准

I)已知甲厂产品的等级系数X1的概率分布列如下所示:

X1的数字期望EX1=6,求ab的值;

II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

3 5 3 3 8 5 5 6 3 4

6 3 4 7 5 3 4 8 5 3

8 3 4 3 4 4 7 5 6 7

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.

在(I)、(II)的条件下,若以性价比为判断标准,则哪个工厂的产品更具可购买性?说明理由.

注:(1)产品的性价比”=

2性价比大的产品更具可购买性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)当求函数的单调区间

(Ⅱ)当若函数与函数的图像总有两个交点设两个交点的横坐标分别为.

①求的取值范围

②求证:.

查看答案和解析>>

同步练习册答案