精英家教网 > 高中数学 > 题目详情

已知一四棱锥P-ABCD的三视图如下,E是则棱PC上的动点.

(1)求四棱锥P-ABCD的体积;

(2)不论点E在何位置,是否都又BD⊥AE?证明你的结论;

(3)若E点为PC的中点,求二面角D-AE-B的大小.

答案:
解析:

  

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的大小;
(Ⅲ)求二面角P一EC一D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F分别是AB、PD的中点.
(1)求证:AF∥平面PEC;
(2)求二面角P-EC-D的余弦值;
(3)求点B到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点.
(1)求证:AF⊥平面PDC;
(2)求三棱锥B-PEC的体积;
(3)求证:AF∥平面PEC.

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高二下学期第二次月考数学理卷 题型:解答题

(13分)已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点。

(Ⅰ)求证:AF∥平面PEC;

(Ⅱ)求PC与平面ABCD所成角的正切值;

(Ⅲ)求二面角P一EC一D的正切值。

 

 

查看答案和解析>>

同步练习册答案