精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x-aex,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线的方程;
(Ⅱ)若曲线y=f(x)与x轴有且只有一个交点,求a的取值范围;
(Ⅲ)设函数g(x)=x3,请写出曲线y=f(x)与y=g(x)最多有几个交点.(直接写出结论即可)

分析 (Ⅰ)求出a=1时的函数f(x)的导数,求得切线的斜率和切点,即可得到所求切线的方程;
(Ⅱ)求出导数,对a讨论,当a≤0时,当a>0时,求出单调区间,极值,由题意可得零点和a的范围;
(Ⅲ)由(Ⅱ)和y=x3的图象可得,曲线f(x)=x-aex与曲线g(x)=x3最多有3个交点.

解答 解:(Ⅰ)当a=1时,f(x)=x-ex,f′(x)=1-ex
当x=0时,y=-1,又f′(0)=0,
所以曲线y=f(x)在点(0,f(0))处的切线方程为y=-1;
(Ⅱ)由f(x)=x-aex,得f′(x)=1-aex
当a≤0时,f'(x)>0,此时f(x)在R上单调递增;
当x=a时,f(a)=a-aea=a(1-ea)≤0,当x=1时,f(1)=1-ae>0,
所以当a≤0时,曲线y=f(x)与x轴有且只有一个交点;         
当a>0时,令f'(x)=0,得x=-lna.f(x)与f'(x)在区间(-∞,+∞)上的情况如下:

x(-∞,-lna)-lna(-lna,+∞)
f'(x)+0-
f(x)极大值
若曲线y=f(x)与x轴有且只有一个交点,
则有f(-lna)=0,即-lna-a e-lna=0.解得$a=\frac{1}{e}$.
综上所述,当a≤0或$a=\frac{1}{e}$时,曲线y=f(x)与x轴有且只有一个交点;
(Ⅲ)曲线f(x)=x-aex与曲线g(x)=x3最多有3个交点.

点评 本题考查导数的运用:求切线的方程和单调区间、极值,考查函数零点的问题的解法,考查分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.命题p:“方程x2+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆”;命题q:对任意实数x都有mx2+mx+1>0恒成立.若p∧q是假命题,p∨q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.我们知道,对于指数函数f(x)=ax(a>0,a≠1)具有如下特征,对定义域R内任意实数m,n,都有f(m+n)=f(m)•f(n),现请你写出满足如上特征的一个非指数函数的函数解析式:f(x)=a2x(a>0,a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线Cn的方程为:|x|n+|y|n=1(n∈N*).
(Ⅰ)分别求出n=1,n=2时,曲线Cn所围成的图形的面积;
(Ⅱ)若Sn(n∈N*)表示曲线Cn所围成的图形的面积,求证:Sn(n∈N*)关于n是递增的;
(Ⅲ) 若方程xn+yn=zn(n>2,n∈N),xyz≠0,没有正整数解,求证:曲线Cn(n>2,n∈N*)上任一点对应的坐标(x,y),x,y不能全是有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对边分别为a,b,c,且$c=4\sqrt{2}$,B=45°,面积S=2,则a=1;b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将一张长8cm,宽6cm的长方形的纸片沿着一条直线折叠,如图1,图2,不考虑其它情况,折痕(线段)将纸片分成两部分,面积分别为S1cm2,S2cm2,其中S1≤S2.记折痕长为lcm.
(1)若l=4,求S1的最大值;
(2)若S1:S2=1:3,求l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,平行四边形ABCD中,AB=2AD=2,∠BAD=60°,E为DC的中点,那么$\overrightarrow{AC}$与$\overrightarrow{EB}$所成角的余弦值为(  )
A.$\frac{\sqrt{7}}{7}$B.-$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{14}$D.-$\frac{\sqrt{7}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:a1=$\frac{1}{2}$,an+1-an=p•3n-1-nq,n∈N*,p,q∈R.
(1)若q=0,且数列{an}为等比数列,求p的值;
(2)若p=1,且a4为数列{an}的最小项,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个非零平面向量,若$\overrightarrow{p}$=$\frac{\overrightarrow{a}}{\overrightarrow{|a|}}$+$\frac{\overrightarrow{b}}{\overrightarrow{|b|}}$+$\frac{\overrightarrow{c}}{\overrightarrow{|c|}}$,则|$\overrightarrow{p}$|的最大值与最小值之和为(  )
A.3B.2C.1D.4

查看答案和解析>>

同步练习册答案